scispace - formally typeset
Search or ask a question

Showing papers by "Kuo-Nan Liou published in 2015"


Journal ArticleDOI
TL;DR: In this paper, a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models is presented.
Abstract: Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the single-scattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed. With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared (IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed. The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models (GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven.

152 citations


Journal ArticleDOI
TL;DR: In this article, a theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth.
Abstract: . A theoretical black carbon (BC) aging model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, BC coated by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Theoretical calculations are consistent with measurements in extinction and absorption cross sections for fresh BC aggregates with different BC sizes (i.e., mobility diameters of 155, 245, and 320 nm), with differences of ≤ 25 %. The measured optical cross sections for BC coated by sulfuric acid and for that undergoing further hygroscopic growth are generally captured (differences

122 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of dust particle aspect ratios on single and multiple-scattering processes were studied using the spheroidal model in order to obtain a better understanding of the radiance and polarization signals at the top of the atmosphere (TOA) under various dust-aerosolloading conditions.
Abstract: The effects of dust particle aspect ratios on single- and multiple-scattering processes are studied using the spheroidal model in order to obtain a better understanding of the radiance and polarization signals at the top of the atmosphere (TOA) under various dust-aerosol-loading conditions. Specifically, the impact of the particle aspect ratio on the polarization state of the TOA radiation field is demonstrated by comparing the normalized polarized radiances observed by the POLDER (POLarization and Directionality of the Earth׳s Reflectances) instrument on board the PARASOL (Polarisation et Anisotropie des Reflectances au sommet de l׳Atmosphere, couples avec un Satellite d׳Observation emportant un Lidar) satellite with the corresponding theoretical counterparts. Furthermore, presented are the aspect ratio values inferred from multi-angular polarized radiance measurements of Saharan and Asian dust by the POLDER/PARASOL.

34 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate 3D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model- CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years.
Abstract: . We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

20 citations


Journal ArticleDOI
TL;DR: In this paper, the authors estimate black carbon (BC) emissions in the western United States for July-September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model and its adjoint.
Abstract: . We estimate black carbon (BC) emissions in the western United States for July–September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2° × 2.5° (a factor of 2.1 increase) and 47.3 Gg at 0.5° × 0.667° (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions (~ 35 % at 2° × 2.5° and ~ 15 % at 0.5° × 0.667°). The emissions are ~ 20–50 % larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6–6.5 Gg and anthropogenic BC emissions 8.6–12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective {a priori} emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.

17 citations