Institution
Pacific Northwest National Laboratory
Facility•Richland, Washington, United States•
About: Pacific Northwest National Laboratory is a(n) facility organization based out in Richland, Washington, United States. It is known for research contribution in the topic(s): Catalysis & Aerosol. The organization has 11581 authors who have published 27934 publication(s) receiving 1120489 citation(s). The organization is also known as: PNL & PNNL.
Topics: Catalysis, Aerosol, Mass spectrometry, Population, Adsorption
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.
7,156 citations
[...]
Netherlands Environmental Assessment Agency1, Utrecht University2, Joint Global Change Research Institute3, National Institute for Environmental Studies4, International Institute of Minnesota5, Pacific Northwest National Laboratory6, University of Maryland, College Park7, National Center for Atmospheric Research8, Potsdam Institute for Climate Impact Research9, Vienna University of Technology10, Electric Power Research Institute11
TL;DR: The Representative Concentration Pathways (RCP) as discussed by the authors is a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments.
Abstract: This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m 2 . The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5×0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow
5,149 citations
[...]
4,004 citations
[...]
University of Illinois at Urbana–Champaign1, Joint Institute for the Study of the Atmosphere and Ocean2, Cooperative Institute for Research in Environmental Sciences3, University of Leeds4, University of Oslo5, United States Environmental Protection Agency6, University of Michigan7, Pacific Northwest National Laboratory8, German Aerospace Center9, United States Department of Energy10, Max Planck Society11, University of Tokyo12, National Oceanic and Atmospheric Administration13, Forschungszentrum Jülich14, Norwegian Meteorological Institute15, Indian Institute of Technology Bombay16, China Meteorological Administration17, Peking University18, Met Office19, Desert Research Institute20, Clarkson University21, Stanford University22, European Centre for Medium-Range Weather Forecasts23, International Institute of Minnesota24, Goddard Institute for Space Studies25, Yale University26, University of Washington27, University of California, Irvine28
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
3,741 citations
[...]
Northern Arizona University1, National Institutes of Health2, University of Minnesota3, University of California, Davis4, Woods Hole Oceanographic Institution5, Massachusetts Institute of Technology6, University of Copenhagen7, University of Trento8, Chinese Academy of Sciences9, University of California, San Francisco10, University of Pennsylvania11, Pacific Northwest National Laboratory12, North Carolina State University13, University of California, San Diego14, Institute for Systems Biology15, Dalhousie University16, University of British Columbia17, Statens Serum Institut18, Anschutz Medical Campus19, University of Washington20, Michigan State University21, Stanford University22, Broad Institute23, Harvard University24, Australian National University25, University of Düsseldorf26, University of New South Wales27, Sookmyung Women's University28, San Diego State University29, Howard Hughes Medical Institute30, Max Planck Society31, Cornell University32, Colorado State University33, Google34, Syracuse University35, Webster University36, United States Department of Agriculture37, University of Arkansas for Medical Sciences38, Colorado School of Mines39, National Oceanic and Atmospheric Administration40, University of Southern Mississippi41, University of California, Merced42, Wageningen University and Research Centre43, University of Arizona44, Environment Agency45, University of Florida46, Merck & Co.47
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.
3,456 citations
Authors
Showing all 11581 results
Name | H-index | Papers | Citations |
---|---|---|---|
Yi Cui | 220 | 1015 | 199725 |
Derek R. Lovley | 168 | 582 | 95315 |
Xiaoyuan Chen | 149 | 994 | 89870 |
Richard D. Smith | 140 | 1180 | 79758 |
Taeghwan Hyeon | 139 | 563 | 75814 |
Jun Liu | 138 | 616 | 77099 |
Federico Capasso | 134 | 1189 | 76957 |
Jillian F. Banfield | 127 | 562 | 60687 |
Mary M. Horowitz | 127 | 557 | 56539 |
Frederick R. Appelbaum | 127 | 677 | 66632 |
Matthew Jones | 125 | 1161 | 96909 |
Rainer Storb | 123 | 905 | 58780 |
Zhifeng Ren | 122 | 695 | 71212 |
Wei Chen | 122 | 1946 | 89460 |
Thomas E. Mallouk | 122 | 549 | 52593 |