scispace - formally typeset
Search or ask a question

Showing papers by "Laszlo Tora published in 1994"


Journal ArticleDOI
07 Oct 1994-Cell
TL;DR: The identification of a human TBP-associated factor (TAF), hTAFII30, associated with a subset of TFIID complexes and the existence of functionally distinct TFIIDs populations that share common TAFIIs but differ in specific TAFiIs are demonstrated.

392 citations


Journal ArticleDOI
TL;DR: Investigation of the role of the N‐terminal region of human TBP in transcription initiation from RNA polymerase (Pol) I, II and III promoters by using three monoclonal antibodies shows that a defined region within the N-terminal domain may be involved in specific protein‐protein interactions required for the assembly of functional preinitiation complexes on TATA‐containing, but not on Tata‐less promoters.
Abstract: In eukaryotes, the TATA box binding protein (TBP) is an integral component of the transcription initiation complexes of all three classes of nuclear RNA polymerases. In this study we have investigated the role of the N-terminal region of human TBP in transcription initiation from RNA polymerase (Pol) I, II and III promoters by using three monoclonal antibodies (mAbs). Each antibody recognizes a distinct epitope in the N-terminal domain of human TBP. We demonstrate that these antibodies differentially affect transcription from distinct classes of promoters. One antibody, mAb1C2, and a synthetic peptide comprising its epitope selectively inhibited in vitro transcription from TATA-containing, but not from TATA-less promoters, irrespective of whether they were transcribed by Pol II or Pol III. Transcription by Pol I, on the other hand, was not affected. Two other antibodies and their respective epitope peptides did not affect transcription from any of the promoters tested. Order of addition experiments indicate that mAb1C2 did not prevent binding of TBP to the TATA box or the formation of the TBP-TFIIA-TFIIB complex but rather inhibited a subsequent step of preinitiation complex formation. These data suggest that a defined region within the N-terminal domain of human TBP may be involved in specific protein-protein interactions required for the assembly of functional preinitiation complexes on TATA-containing, but not on TATA-less promoters.

122 citations


Journal ArticleDOI
TL;DR: In this paper, a multisubunit transcription factor (SL1/TIF-IB) consisting of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs) was compared with a chimeric complex containing epitope-tagged human TBP and murine TAFs.
Abstract: Unlike genes transcribed by RNA polymerases II and III, transcription by RNA polymerase I is highly species-specific. Ribosomal promoter selectivity is brought about by a multisubunit transcription factor (SL1/TIF-IB) which consists of the TATA-binding protein (TBP) and three TBP-associated factors (TAFs). To determine the basis for the inability of SL1/TIF-IB to recognize heterologous rDNA, the transcriptional properties and the subunit composition of the murine and the human factor, as well as a chimeric complex containing epitope-tagged human TBP and murine TAFs, have been compared. We show that TBP can be exchanged between the human and mouse factor indicating that the variable N-terminal domain of TBP does not play a significant role in rDNA promoter selectivity. Instead, DNA binding is brought about by the TAFs. UV crosslinking experiments demonstrate that binding to the ribosomal gene promoter is mediated by two TAFs (TAFI48 and TAFI68) which have the same electrophoretic mobility in the human and mouse factor. The largest TAF is different in both species and is suggested to play a role in the species-specific assembly of productive preinitiation complexes. Thus, evolutionary changes of rDNA promoter sequences have been accompanied by changes in specific TAFs.

53 citations


Journal ArticleDOI
TL;DR: Results indicate that the relative lack of activity of the TEF-1 activation function in vitro in BJA-B cell extracts does not result from the absence of positively acting factors from the presence of a cell-specific negatively acting factor(s).
Abstract: Transcription in HeLa cell extracts in vitro was stimulated 8- to 10-fold by a recombinant chimera, GAL-TEF-1, consisting of the DNA-binding domain of GAL4 and the activation function of the HeLa cell activator TEF-1. In contrast, only a 2- to 3-fold stimulation was obtained with GAL-TEF-1 in extracts from BJA-B lymphoid cells. Stimulation by GAL-TEF-1 in BJA-B extracts was dramatically increased by the addition of immunopurified HeLa cell TFIID, suggesting that BJA-B TFIID lacks or contains lower quantities of a TATA-binding-protein-associated factor(s) required for the activity of the TEF-1 activation function. However, chromatography, immunopurification, and transcriptional reconstitution experiments indicated that BJA-B extracts did not lack the previously identified TATA-binding-protein-associated factors required for TEF-1 activity but rather contained a negatively acting factor(s) which inhibited transactivation by GAL-TEF-1. These results indicate that the relative lack of activity of the TEF-1 activation function in vitro in BJA-B cell extracts does not result from the absence of positively acting factors from the presence of a cell-specific negatively acting factor(s).

23 citations