scispace - formally typeset
Search or ask a question

Showing papers by "Laura B. Creemers published in 2009"


Journal ArticleDOI
TL;DR: It is demonstrated that a sequential angiogenic and osteogenic growth factor release may be beneficial for the enhancement of bone regeneration.

560 citations


Journal ArticleDOI
TL;DR: This study illustrates the influence of patient age and defect location and age on clinical outcome 3 years after treatment of a focal cartilage lesion in patients with a traumatic knee injury.
Abstract: BackgroundCartilage therapy for focal articular lesions has been implemented for more than a decade, and it is becoming increasingly available. What is still lacking, however, is analysis of patient characteristics to help improve outcome or select patients for specific treatment.PurposeTo analyze the prognostic value of patient age and defect size, age, and location on clinical outcome 3 years after cartilage therapy.Study DesignCohort study; Level of evidence, 3.MethodsFifty-five patients (age, 35 ± 9 years) were randomly selected from a prospective database. Each had a traumatic knee injury, each was treated for a focal cartilage lesion, and each was assessed with the Knee injury and Osteoarthritis Outcome Score (KOOS) 3 years after surgery. Patient characteristics (ie, patient age and defect size, age, and location) were tested for valid inclusion in the regression model. Multiple linear regression was used to determine which variables influenced clinical improvement. Binary KOOS scores were generated...

90 citations


Journal ArticleDOI
TL;DR: Both microfracture and the use of implants as a treatment for established localized cartilage defects in the medial femoral condyle caused considerable degeneration of the directly articulating cartilage as well as in more remote sites in the knee.
Abstract: Background: Localized cartilage defects are frequently associated with joint pain, reduced function, and a predisposition to the development of osteoarthritis. The purposes of the current study were to investigate the feasibility of the application of defect-sized femoral implants for the treatment of localized cartilage defects and to compare this treatment, in terms of joint degeneration, with the use of microfracture in a goat model of established cartilage defects. Methods: In nine Dutch milk goats, a defect in the medial femoral condyle was created in both knees. After ten weeks, the knees were randomly treated by microfracture or by placement of an oxidized zirconium implant. At twenty-six weeks after surgery, the animals were killed. The joints were evaluated macroscopically. Implant osseointegration was measured by automated histomorphometry, and cartilage repair (after microfracture) was scored histologically. Cartilage quality was analyzed macroscopically and histologically. Glycosaminoglycan content and release were measured by alcian blue assay, and the synthesis and release of newly formed glycosaminoglycans were measured by liquid scintillation analysis of the incorporation of 35SO42– in tissue and medium. Results: The mean bone-implant contact (and standard error) was appropriate (14.6% ± 5.4%), and the amount of bone surrounding the implant was extensive (mean, 40.3% ± 4.0%). The healing of the microfracture-treated defects was extensive, although not complete (mean, 18.38 ± 0.43 points of a maximum possible score of 24 points). The macroscopic cartilage evaluation did not show any significant differences between the treatments. On histologic evaluation, the cartilage of the medial tibial plateau articulating directly against the treated defects demonstrated significantly more degeneration in the microfracture-treated knees than in the implant-treated knees (p < 0.05). This was in accordance with a significantly higher glycosaminoglycan content, higher synthetic activity, and decreased glycosaminoglycan release of the medial tibial plateau cartilage of the implant-treated knees (p < 0.05 for all). On histological analysis, degeneration was also found in the cartilage of the lateral tibial plateau and condyle, but no significant difference was found between the treatments. Conclusions: Both microfracture and the use of implants as a treatment for established localized cartilage defects in the medial femoral condyle caused considerable (p < 0.05) degeneration of the directly articulating cartilage as well as in more remote sites in the knee. However, in the medial tibial plateau, the metal implants caused less damage than the microfracture technique. Clinical Relevance: Although this study shows that small metal implants may be more suitable than microfracture in the treatment of localized cartilage defects in the knee, the generalized degeneration found following both treatments should be addressed first.

57 citations


Journal ArticleDOI
TL;DR: The benefit of applying non-invasive techniques in drug delivery-based bone regeneration strategies is demonstrated by providing detailed and reliable profiles of the growth factor retention and bone formation at different implantation sites in a limited number of animals.

54 citations


Journal ArticleDOI
TL;DR: Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites in a goat ectopic implantation model.
Abstract: A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 microg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2-loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2-impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 microg/mg BMP-2-loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2-impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites.

50 citations


01 May 2009
TL;DR: PLG appears to have potent antimicrobial capacity, but the role of MPO in this activity is questionable, however, additional research should elucidate its exact antimicrobial activity.
Abstract: The use of platelet-leukocyte gel (PLG), made from platelet rich plasma, to stimulate bone formation and wound healing has been investigated extensively. As leukocytes play an important role in the innate host-defence, we hypothesised that PLG might also have antimicrobial properties. The purpose of this study was to investigate the antimicrobial activity of PLG against Staphylococcus aureus in an in vitro experiment. To determine the contribution of myeloperoxidase (MPO), present in leukocytes, in this process, MPO release was measured. Platelet rich plasma (PRP) was prepared from whole blood of 6 donors. In this process platelet poor plasma (PPP) was obtained as well. PLG was prepared by mixing PRP with either autologous (PLG-AT) or bovine thrombin (PLG-BT). The antimicrobial activity of PLG-AT, PLG-BT, PRP and PPP was determined in a bacterial kill assay, containing 1x106 CFU/ml of Staphylococcus aureus, during a 24-hour period. MPO release was measured by ELISA. Cultures showed a rapid decrease in the number of bacteria in the presence of both PLG-AT and PLG-BT, which was maximal between 4 and 8 hours, to approximately 1% of the bacteria in controls. Also PRP and PPP induced a statistically significant bacterial kill, but the effect of PLG-AT was the largest (p=0.093 vs. PLG-BT; p=0.004 vs. PRP and p PLG appears to have potent antimicrobial capacity, but the role of MPO in this activity is questionable. PLG might represent a useful strategy against postoperative infections. Further research should investigate its antimicrobial capacity in the in vivo situation.

28 citations


Journal ArticleDOI
TL;DR: Although only a single short‐term follow‐up period was investigated in this study, caution is warranted using small metal implants as a treatment for established localized cartilage defects because, even after 4 weeks in this model, the metal implants caused considerable degeneration of the articulating surface.

26 citations


Journal ArticleDOI
TL;DR: This study shows that the medial tibial plateau can be successfully replaced by a cobalt–chromium implant in a large animal model, however, considerable femoral cartilage degeneration of the medial femoral condyle was induced, suggesting that care must be taken introducing hemiarthroplasty devices in a human clinical setting for the treatment of postmeniscectomy cartilage deterioration.

13 citations


Journal ArticleDOI
TL;DR: It is concluded that bone marrow stromal cells survived in vivo and at least partially differentiated after implantation and a goat-specific anti-collagen type III, donor-derived matrix could be demonstrated.
Abstract: Ligament tissue engineering based on cell-seeded biomechanically functional constructs is a commonly studied strategy toward native anterior cruciate ligament replacement. Little is known about the survival and differentiation of the seeded cells after the transplantation. We applied retroviral genetic marking to trace implanted cells and studied their differentiation by species-specific immunolabeling of the extracellular matrix produced. Goat bone marrow stromal cells were transduced with a MoMuLV-based vector encoding the DeltaLNGFR gene. Transduced cells were seeded onto poly(lactic-co-glycolic acid) (PLGA) fibers and implanted subcutaneously into nude mice and left for various periods up to 6 weeks. Immunohistochemistry for LNGFR expression showed survival of the seeded cells after transplantation for up to 6 weeks. Immunohistochemistry for collagen type I and III showed the production of fibrous tissue inside the scaffolds. Moreover, using a goat-specific anti-collagen type III, donor-derived matrix could be demonstrated. We conclude that bone marrow stromal cells survived in vivo and at least partially differentiated after implantation.

12 citations


Journal ArticleDOI
TL;DR: Increased knowledge of intra-articular soluble mediators correlating with cartilage pathology will lead to further development of cytokine-modulating products and, eventually, to effective inhibition of cartilage degeneration, in both the osteoarthritic as well as injured joints.
Abstract: Osteoarthritis is a disabling disease of the aging generation, which results in loss of quality of life and increased healthcare costs. Cytokines appear to play an important role in the cartilaginous degeneration characterizing the pathological process. Increasing experience is being gained with cytokine-modulating therapies aimed at interfering with effects of chondrodegradative cytokines in the synovial fluid. Although in vitro and in vivo effectiveness of several of these therapies has been demonstrated, clinical effectiveness remains disputable, which may be related to the low levels of inflammatory cytokines found in osteoarthritic joints. By contrast, directly after joint trauma, which has been shown to predipose to early osteoarthritis, synovial fluid cytokine levels are strongly increased. Cytokine-modulating therapies, however, have hardly been considered for this indication. Increased knowledge of intra-articular soluble mediators correlating with cartilage pathology will lead to further develop...

12 citations