scispace - formally typeset
Search or ask a question

Showing papers by "Lu Zhang published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors present several examples of observed hydrologic non-stationarity in far south-eastern Australia exposed by the prolonged 1997-2009 “Millennium” drought, focussing on the implications of this hydrologoric non-starity on hydrological modelling and prediction.
Abstract: The term ‘hydrologic non-stationarity’ has been used to describe many things, ranging from different climate-runoff relationships evident in different periods within a long hydroclimate time series to changes in hydroclimate characteristics and dominant hydrological processes in an increasingly warmer and higher CO2 world. This paper presents several examples of observed ‘hydrologic non-stationarity’ in far south-eastern Australia exposed by the prolonged 1997–2009 “Millennium” drought, focussing on the implications of this hydrologic non-stationarity on hydrological modelling and prediction. The runoff decline during the drought was unprecedented in the instrumental historical record. It was caused not only by the lower annual rainfall, but also by changes in other climate characteristics (lack of any high rainfall years, change in rainfall seasonality and higher temperatures) and dominant hydrological processes (reduced surface–groundwater connection and farm dams intercepting proportionally more water during dry periods). Hydrological models developed and calibrated against pre-1997 data cannot predict adequately the flow volumes and runoff characteristics during the drought. However, as the Millennium drought has exposed these extreme conditions, models can now be developed and calibrated to represent these, as well other conditions observed in the instrumental historical records (i.e., hydrologic non-stationarity that has already been observed). Such models should be able to satisfactorily predict the near-term runoff which will be influenced mainly by the rainfall inputs. However, further into the future, runoff will be increasingly influenced by higher temperatures and changed ecohydrological processes under higher CO2. Reliably modelling these is difficult because of the complex interactions and feedbacks between many variables and processes in a future environment not seen in the past (i.e., hydrologic non-stationarity that has not been observed).

102 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the long-term (half a century or longer) groundwater storage trends in 17 Australian catchments and found that groundwater storage exhibited different trends over different shorter periods.

38 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated how vegetation water-use responds to climate variation and the corresponding controls on recharge using a modelling approach using more than two years of field experimental data conducted in Mulga in arid central Australia.

34 citations


Journal ArticleDOI
TL;DR: In this article, an ecohydrological model (WAVES) was used to estimate the direct and indirect effects and the interactive effect between climate change and eCO 2 on water availability in four different catchments in Australia with contrasting climate regime and vegetation cover.

30 citations


Journal ArticleDOI
TL;DR: In this article, the WAter Vegetation Energy and Solute (WAVES) model was applied to simulate ecohydrological effects of the eCO2 at two free-air CO2 enrichment (FACE) experimental sites with contrasting vegetation.
Abstract: Response of leaf area index (LAI) is the key determinant for predicting impacts of the elevated CO2 (eCO2) on water budgets. Importance of the changes in functional attributes of vegetation associated with eCO2 for predicting responses of LAI has rarely been addressed. In this study, the WAter Vegetation Energy and Solute (WAVES) model was applied to simulate ecohydrological effects of the eCO2 at two free-air CO2 enrichment (FACE) experimental sites with contrasting vegetation. One was carried out by the Oak Ridge National Laboratory on the forest (ORNL FACE). The other one was conducted by the University of Minnesota on the grass (BioCON FACE). Results demonstrated that changes in functional attributes of vegetation (including reduction in specific leaf area, changes in carbon assimilation and allocation characteristics) and availability of nutrients are important for reproducing the responses of LAI, transpiration and soil moisture at both sites. Predicted LAI increased slightly at both sites because of fertilization effects of the eCO2. Simulated transpiration decreased 10·5% at ORNL site and 13·8% at BioCON site because of reduction in the stomatal conductance. Predicted evaporation from interception and soil surface increased slightly (<1·0 mm year−1) at both sites because of increased LAI and litter production, and increased soil moisture resulted from reduced transpiration. All components of run-off were predicted to increase because of significant decrease in transpiration. Simulated mean annual evapotranspiration decreased about 8·7% and 10·8%, and mean annual run-off increased about 11·1% (59·3 mm year−1) and 9·5% (37·6 mm year−1) at the ORNL and BioCON FACE sites, respectively. Copyright © 2014 John Wiley & Sons, Ltd.

12 citations