Author
Marcelo J. P. Alcocer
Other affiliations: Lund University, Istituto Italiano di Tecnologia
Bio: Marcelo J. P. Alcocer is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Photosystem I & Photoprotection. The author has an hindex of 13, co-authored 19 publications receiving 15511 citations. Previous affiliations of Marcelo J. P. Alcocer include Lund University & Istituto Italiano di Tecnologia.
Papers
More filters
[...]
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
6,875 citations
Journal Article•
[...]
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
6,454 citations
[...]
TL;DR: Optical spectroscopy is used to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV, and it is shown that such a value is consistent with almost full ionization of the excitonic population under photovoltaic cell operating conditions.
Abstract: Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic perovskites show promise for overcoming such limitations. Here, we use optical spectroscopy to estimate the exciton binding energy in the mixed-halide crystal to be in the range of 50 meV. We show that such a value is consistent with almost full ionization of the exciton population under photovoltaic cell operating conditions. However, increasing the total photoexcitation density, excitonic species become dominant, widening the perspective of this material for a host of optoelectronic applications.
1,288 citations
[...]
TL;DR: In this article, a high-yield, low-cost synthesis route to colloidal colloidal Cu1-xInS2 nanocrystals with a tunable amount of Cu vacancies in the crystal lattice was reported.
Abstract: We report a high-yield, low cost synthesis route to colloidal Cu1-xInS2 nanocrystals with a tunable amount of Cu vacancies in the crystal lattice These are then converted into quaternary Cu–In–Zn–S (CIZS) nanocrystals by partial exchange of Cu+ and In3+ cations with Zn2+ cations The photoluminescence quantum yield of these CIZS nanocrystals could be tuned up to a record 80%, depending on the amount of copper vacancies
288 citations
[...]
TL;DR: It is shown that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K, and that vibronically coupled excited states suggest that vibronic coupling is relevant for photosynthetic energy transfer.
Abstract: The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna–Matthews–Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore–environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer. The implications of coherence signals for the transfer of energy within the Fenna–Matthews–Olson complex of photosynthetic green sulfur bacteria is a well debated topic. Now, polarization-controlled 2D spectroscopy — aided by vibronic exciton modelling — has enabled the characterization of all such coherences and determination of their physical origins; while electronic coherences dephase extremely rapidly, ground- and excited-state vibrational coherences dominate.
144 citations
Cited by
More filters
[...]
TL;DR: The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410–530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.
Abstract: Metal halides perovskites, such as hybrid organic–inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4–15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410–700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12–42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiativ...
6,170 citations
[...]
TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Abstract: The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.
5,684 citations
[...]
TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Abstract: Within the space of a few years, hybrid organic–inorganic perovskite solar cells have emerged as one of the most exciting material platforms in the photovoltaic sector. This review describes the rapid progress that has been made in this area.
5,463 citations
[...]
TL;DR: It is found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm−2) illumination and exceed 3 millimeters under weak light for both electrons and holes.
Abstract: Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm(-2)) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals than in polycrystalline thin films. The long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.
4,393 citations
[...]
TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Abstract: The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3 (MA = CH3NH3(+); X = Br(-) or I(-)) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics. We observed exceptionally low trap-state densities on the order of 10(9) to 10(10) per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.
3,939 citations