scispace - formally typeset
Open AccessJournal Article

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

Reads0
Chats0
TLDR
In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract
Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

read more

Citations
More filters
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Journal ArticleDOI

The emergence of perovskite solar cells

TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Journal ArticleDOI

Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals

TL;DR: It is found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm−2) illumination and exceed 3 millimeters under weak light for both electrons and holes.
Journal ArticleDOI

Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Journal ArticleDOI

Bright light-emitting diodes based on organometal halide perovskite

TL;DR: It is shown, using photoluminescence studies, that radiative bimolecular recombination is dominant at higher excitation densities, Hence, the quantum efficiencies of the perovskite light-emitting diodes increase at higher current densities.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Related Papers (5)