scispace - formally typeset
Search or ask a question

Showing papers by "Mark R. Wormald published in 2015"


Journal ArticleDOI
TL;DR: AAT can bind LTB4 and that AAT/LTB4 complex formation modulates BLT1 engagement and downstream signaling events, including 1,4,5-triphosphate production and Ca2+ flux, which reinforces the utility of this therapy for resolving inflammation in AATD and supports useful future clinical applications in treatment of other L TB4-related diseases.
Abstract: Leukotriene B4 (LTB4) contributes to many inflammatory diseases, including genetic and nongenetic forms of chronic obstructive pulmonary disease. α-1 Antitrypsin (AAT) deficiency (AATD) is characterized by destruction of lung parenchyma and development of emphysema, caused by low AAT levels and a high neutrophil burden in the airways of affected individuals. In this study we assessed whether AATD is an LTB4-related disease and investigated the ability of serum AAT to control LTB4 signaling in neutrophils. In vitro studies demonstrate that neutrophil elastase is a key player in the LTB4 inflammatory cycle in AATD, causing increased LTB4 production, and associated BLT1 membrane receptor expression. AATD patients homozygous for the Z allele were characterized by increased neutrophil adhesion and degranulation responses to LTB4. We demonstrate that AAT can bind LTB4 and that AAT/LTB4 complex formation modulates BLT1 engagement and downstream signaling events, including 1,4,5-triphosphate production and Ca(2+) flux. Additionally, treatment of ZZ-AATD individuals with AAT augmentation therapy decreased plasma LTB4 concentrations and reduced levels of membrane-bound neutrophil elastase. Collectively, these results provide a mechanism by which AAT augmentation therapy impacts on LTB4 signaling in vivo, and not only reinforces the utility of this therapy for resolving inflammation in AATD, but supports useful future clinical applications in treatment of other LTB4-related diseases.

44 citations


Journal ArticleDOI
TL;DR: It is indicated that diacylglycerol is the ligand moiety of microbial glycolipids and lipoproteins that bind to hTLR2ED and that both types of ligands bind to the same binding site of hTLr2ED.
Abstract: TLRs are key innate immune receptors that recognize conserved features of biological molecules that are found in microbes. In particular, TLR2 has been reported to be activated by different kinds of microbial ligands. To advance our understanding of the interaction of TLR2 with its ligands, the recombinant human TLR2 ectodomain (hTLR2ED) was expressed using a baculovirus/insect cell expression system and its biochemical, as well as ligand binding, properties were investigated. The hTLR2ED binds synthetic bacterial and mycoplasmal lipopeptides, lipoteichoic acid from Staphylococcus aureus, and synthetic lipoarabinomannan precursors from Mycobacterium at extracellular physiological conditions, in the absence of its co-receptors TLR1 and TLR6. We also determined that lipopeptides and glycolipids cannot bind simultaneously to hTLR2ED and that the phosphatidyl inositol mannoside 2 (Pim2) is the minimal lipoarabinomannan structure for binding to hTLR2ED. Binding of hTLR2ED to Pim4, which contains a diacylglycerol group with one of its acyl chains containing 19 carbon atoms, indicates that hTLR2ED can bind ligands with acyl chains longer than 16 carbon atoms. In summary, our data indicate that diacylglycerol is the ligand moiety of microbial glycolipids and lipoproteins that bind to hTLR2ED and that both types of ligands bind to the same binding site of hTLR2ED.

24 citations


Journal ArticleDOI
TL;DR: 4-(Azidomethyl)-3-fluoro-Aze and 3,4-difluoroproline are new peptide building blocks which are not susceptible to aldol cleavage and inhibits the growth of pancreatic cancer cells to a similar degree as gemcitabine.
Abstract: Reverse aldol opening renders amides of 3-hydroxyazetidinecarboxylic acids (3-OH-Aze) unstable above pH 8. Aze, found in sugar beet, is mis-incorporated for proline in peptides in humans and is associated with multiple sclerosis and teratogenesis. Aze-containing peptides may be oxygenated by prolyl hydroxylases resulting in potential damage of the protein by a reverse aldol of the hydroxyazetidine; this, rather than changes in conformation, may account for the deleterious effects of Aze. This paper describes the synthesis of 3-fluoro-Aze amino acids as hydroxy-Aze analogues which are not susceptible to aldol cleavage. 4-(Azidomethyl)-3-fluoro-Aze and 3,4-difluoroproline are new peptide building blocks. trans,trans-2,4-Dihydroxy-3-fluoroazetidine, an iminosugar, inhibits the growth of pancreatic cancer cells to a similar degree as gemcitabine.

23 citations