scispace - formally typeset
Search or ask a question

Showing papers by "Mark Simons published in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effectiveness of these models in several geographic and tectonic settings on both single interferenceograms and time series analysis products and validated these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager onboard the Envisat satellite.
Abstract: Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.

218 citations


Journal ArticleDOI
TL;DR: In this article, a new generation of earthquake source models is proposed based on a general formalism that rigorously quantifies and incorporates the impact of uncertainties in fault slip inverse problems.
Abstract: This study lays the groundwork for a new generation of earthquake source models based on a general formalism that rigorously quantifies and incorporates the impact of uncertainties in fault slip inverse problems. We distinguish two sources of uncertainty when considering the discrepancy between data and forward model predictions. The first class of error is induced by imperfect measurements and is often referred to as observational error. The second source of uncertainty is generally neglected and corresponds to the prediction error, that is the uncertainty due to imperfect forward modelling. Yet the prediction error can be shown to scale approximately with the size of earthquakes and thus can dwarf the observational error, particularly for large events. Both sources of uncertainty can be formulated using the misfit covariance matrix, C_χ, which combines a covariance matrix for observation errors, C_d and a covariance matrix for prediction errors, C_p, associated with inaccurate model predictions. We develop a physically based stochastic forward model to treat the model prediction uncertainty and show how C_p can be constructed to explicitly account for some of the inaccuracies in the earth model. Based on a first-order perturbation approach, our formalism relates C_p to uncertainties on the elastic parameters of different regions (e.g. crust, mantle, etc.). We demonstrate the importance of including C_p using a simple example of an infinite strike-slip fault in the quasi-static approximation. In this toy model, we treat only uncertainties in the 1-D depth distribution of the shear modulus. We discuss how this can be extended to general 3-D cases and applied to other parameters (e.g. fault geometry) using our formalism for C_p. The improved modelling of C_p is expected to lead to more reliable images of the earthquake rupture, that are more resistant to overfitting of data and include more realistic estimates of uncertainty on inferred model parameters.

136 citations


Journal ArticleDOI
TL;DR: In this paper, a fully Bayesian inversion of kinematic rupture parameters for the 2011 Mw 9 Tohoku-oki, Japan earthquake is presented, where most of the slip is concentrated in a depth range of 10-20 km from the trench, and that slip decreases towards the trench with significant displacements at the toe of wedge occurring in just a small region.
Abstract: We present a fully Bayesian inversion of kinematic rupture parameters for the 2011 M_w 9 Tohoku-oki, Japan earthquake. Albeit computationally expensive, this approach to kinematic source modelling has the advantage of producing an ensemble of slip models that are consistent with physical a priori constraints, realistic data uncertainties, and realistic but simplistic uncertainties in the physics of the kinematic forward model, all without being biased by non-physical regularization constraints. Combining 1 Hz kinematic GPS, static GPS offsets, seafloor geodesy and near-field and far-field tsunami data into a massively parallel Monte Carlo simulation, we construct an ensemble of samples of the posterior probability density function describing the evolution of fault rupture. We find that most of the slip is concentrated in a depth range of 10–20 km from the trench, and that slip decreases towards the trench with significant displacements at the toe of wedge occurring in just a small region. Estimates of static stress drop and rupture velocity are ambiguous. Due to the spatial compactness of the fault rupture, the duration of the entire rupture was less than approximately 150 s.

93 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived the distribution of subsurface fault slip from geodetic coseismic offsets using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust.
Abstract: Great earthquakes rarely occur within active accretionary prisms, despite the intense long‐term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satellite optical and radar imaging of the 2013 M_w 7.7 earthquake that occurred on the southeastern edge of the Makran plate boundary zone to study this unexpected earthquake. We first compute a multiple point‐source solution from W‐phase waveforms to estimate fault geometry and rupture duration and timing. We then derive the distribution of subsurface fault slip from geodetic coseismic offsets. We sample for the slip posterior probability density function using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust. The rupture nucleated on a subvertical segment, branching out of the Chaman fault system, and grew into a major earthquake along a 50° north‐dipping thrust fault with significant along‐strike curvature. Fault slip propagated at an average speed of 3.0 km/s for about 180 km and is concentrated in the top 10 km with no displacement on the underlying decollement. This earthquake does not exhibit significant slip deficit near the surface, nor is there significant segmentation of the rupture. We propose that complex interaction between the subduction accommodating the Arabia–Eurasia convergence to the south and the Ornach Nal fault plate boundary between India and Eurasia resulted in the significant strain gradient observed prior to this earthquake. Convergence in this region is accommodated both along the subduction megathrust and as internal deformation of the accretionary wedge.

78 citations


Journal ArticleDOI
TL;DR: A new method for automatically detecting transient deformation signals from geodetic time series using a least squares procedure and a spatial weighting scheme that self‐adjusts to the local network density and filters for spatially coherent signals.
Abstract: We present a new method for automatically detecting transient deformation signals from geodetic time series. We cast the detection problem as a least squares procedure where the design matrix corresponds to a highly overcomplete, nonorthogonal dictionary of displacement functions in time that resemble transient signals of various timescales. The addition of a sparsity-inducing regularization term to the cost function limits the total number of dictionary elements needed to reconstruct the signal. Sparsity-inducing regularization enhances interpretability of the resultant time-dependent model by localizing the dominant timescales and onset times of the transient signals. Transient detection can then be performed using convex optimization software where detection sensitivity is dependent on the strength of the applied sparsity-inducing regularization. To assess uncertainties associated with estimation of the dictionary coefficients, we compare solutions with those found through a Bayesian inference approach to sample the full model space for each dictionary element. In addition to providing uncertainty bounds on the coefficients and confirming the optimization results, Bayesian sampling reveals trade-offs between dictionary elements that have nearly equal probability in modeling a transient signal. Thus, we can rigorously assess the probabilities of the occurrence of transient signals and their characteristic temporal evolution. The detection algorithm is applied on several synthetic time series and real observed GPS time series for the Cascadia region. For the latter data set, we incorporate a spatial weighting scheme that self-adjusts to the local network density and filters for spatially coherent signals. The weighting allows for the automatic detection of repeating slow slip events.

38 citations


Journal ArticleDOI
TL;DR: In this paper, a hydrologic model based on time-dependent variability in till strength is proposed to explain transmission of tidal stresses inland of the grounding line, which can reproduce observations from Rutford Ice Stream.
Abstract: Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even at stations many tens of kilometers inland from the grounding line. These surveys suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite-element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress caused by resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model can reproduce observations from Rutford Ice Stream.

33 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used L-band Advanced Land Observation Satellite PALSAR data to infer the distribution of subsurface fault slip during the Tarlay earthquake (M_w 6.8) in eastern Myanmar.
Abstract: We use L‐band Advanced Land Observation Satellite PALSAR data to infer the distribution of subsurface fault slip during the Tarlay earthquake (M_w 6.8) in eastern Myanmar. We find the total length of surface rupture is approximately 30 km, with nearly 2 m maximum surface offset along the westernmost section of the Nam Ma fault (the Tarlay segment). Finite‐fault inversions constrained by Interferometric Synthetic Aperture Radar (InSAR) and pixel‐tracking data suggest that fault slip is concentrated within the upper 10 km of the crust. Maximum slip exceeds 4 m at a depth between 3 and 5 km. Comparison between field measurements and near‐fault deformation obtained from the InSAR range‐offset result suggests about 10%–80% of displacement occurred within a 1 km wide zone off the main surface fault trace. This off‐fault deformation may explain the shallow slip deficit that we observed during this earthquake. We estimate a recurrence interval for Tarlay‐like events to be 1600–6500 yrs at this section of the Nam Ma fault. A detailed paleoseismological study is essential to clarify the slip behavior and the earthquake recurrence interval of the Nam Ma fault.

26 citations


Journal ArticleDOI
TL;DR: In this article, a data system that can ingest, catalog, and process geodetic data and combine it with seismic analysis to estimate the fault rupture locations and slip distributions for large earthquakes is presented.

7 citations


01 Jan 2014
TL;DR: In this article, a data system that can ingest, catalog, and process geodetic data and combine it with seismic analysis to estimate the fault rupture locations and slip distributions for large earthquakes is presented.
Abstract: Rapid determination of the location and extent of earthquake ruptures is helpful for disaster response, as it allows prediction of the likely area of major damage from the earthquake and can help with rescue and recovery planning. With the increasing availability of near real-time data from the Global Positioning S ystem (GPS) and other global navigation satellite system receivers in active tectonic regions, and with the shorter repeat times of many recent and newly launched satellites, geodetic data can be obtained quickly after earthquakes or other disasters. We have been building a data system that can ingest, catalog, and process geodetic data and combine it with seismic analysis to estimate the fault rupture locations and slip distributions for large earthquakes.

7 citations