scispace - formally typeset
Search or ask a question

Showing papers by "Martin Pelletier published in 2022"


Journal ArticleDOI
TL;DR: In this article, the association between prostate cancer and the endocrine-disrupting functions of four prominent EDC families: bisphenols, phthalates, phytoestrogens, and mycoestrogens.

11 citations


Journal ArticleDOI
01 Aug 2022-Cancers
TL;DR: Exposure to BPA and BPS could promote bladder cancer development with a potential clinical impact on bladder cancer progression, and chronic exposure to BPs decreased urothelial cells’ energy metabolism and properties while increasing them for bladder cancer cells.
Abstract: Simple Summary This research brings new knowledge on the potential roles of bisphenol A and bisphenol S on bladder cancer progression. By assessing the impact of bisphenols A and S on normal urothelial cells and non-invasive and invasive bladder cancer cells, this study aimed to demonstrate that these endocrine-disrupting chemicals could promote bladder cancer progression through the alteration of the bioenergetics and behaviours of healthy and cancerous bladder cells. These results could provide a better understanding of the pathophysiology of bladder cancer and its hormone-sensitive characteristics. Furthermore, this study suggests that bisphenols A and S could affect bladder cancer recurrence, progression and patient prognosis. Abstract Bisphenol A (BPA) and bisphenol S (BPS) are used in the production of plastics. These endocrine disruptors can be released into the environment and food, resulting in the continuous exposure of humans to bisphenols (BPs). The bladder urothelium is chronically exposed to BPA and BPS due to their presence in human urine samples. BPA and BPS exposure has been linked to cancer progression, especially for hormone-dependent cancers. However, the bladder is not recognized as a hormone-dependent tissue. Still, the presence of hormone receptors on the urothelium and their role in bladder cancer initiation and progression suggest that BPs could impact bladder cancer development. The effects of chronic exposure to BPA and BPS for 72 h on the bioenergetics (glycolysis and mitochondrial respiration), proliferation and migration of normal urothelial cells and non-invasive and invasive bladder cancer cells were evaluated. The results demonstrate that chronic exposure to BPs decreased urothelial cells’ energy metabolism and properties while increasing them for bladder cancer cells. These findings suggest that exposure to BPA and BPS could promote bladder cancer development with a potential clinical impact on bladder cancer progression. Further studies using 3D models would help to understand the clinical consequences of this exposure.

3 citations


Journal ArticleDOI
TL;DR: Exposure to glucuronidated BPA or BPS decreased the bioenergetics and activity of normal urothelial cells, while increasing these parameters for bladder cancer cells, suggesting that BP metabolites are not as inactive as initially believed, and their ubiquitous presence in the urine could promote bladder cancer progression.
Abstract: Bisphenol A (BPA) and bisphenol S (BPS) are synthetic chemicals used to produce plastics which can be released in food and water. Once ingested, BPA and BPS are metabolized by the liver, mainly as glucuronidated metabolites, and are excreted through urine. Since urine can be stored for many hours, the bladder is chronically exposed to BP metabolites, and studies have shown that these metabolites can remain active in the organism. Therefore, the effect of physiological concentrations of glucuronidated BPs was evaluated on the bioenergetics (glycolysis and mitochondrial respiration), migration and proliferation of normal urothelial cells, and non-invasive and invasive bladder cancer cells. The results demonstrated that an exposure of 72 h to glucuronidated BPA or BPS decreased the bioenergetics and activity of normal urothelial cells, while increasing these parameters for bladder cancer cells. These findings suggest that BP metabolites are not as inactive as initially believed, and their ubiquitous presence in the urine could promote bladder cancer progression.

1 citations


Journal ArticleDOI
TL;DR: Results indicate that dutasteride treatment prevents enteric neuronal damages in the MPTP mouse model, at least in part through anti-inflammatory and mitochondrial effects, suggesting that drug repurposing of dutasterside might be a promising avenue to treat enteric neuroinflammation in early PD.
Abstract: Gastrointestinal disorders in Parkinson’s disease (PD) have been associated with neuronal alteration in the plexus of the gut. We previously demonstrated the immunomodulatory effect of female hormones to treat enteric neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. This study made the hypothesis of obtaining similar neuroprotection as with hormone treatments by affecting steroidogenesis with two 5α-reductase inhibitors, finasteride and dutasteride. These drugs are approved to treat benign prostatic hyperplasia and alopecia and display mitochondrial effects. In MPTP-treated mice, the dopaminergic and vasoactive intestinal peptide (VIP) neurons alteration was prevented by finasteride and dutasteride, while the increase in proinflammatory macrophages density was inhibited by dutasteride treatment but not finasteride. NF-κB response, oxidative stress, and nitric oxide and proinflammatory cytokines production in vitro were only prevented by dutasteride. In addition, mitochondrial production of free radicals, membrane depolarization, decreased basal respiration, and ATP production were inhibited by dutasteride, while finasteride had no effect. In conclusion, the present results indicate that dutasteride treatment prevents enteric neuronal damages in the MPTP mouse model, at least in part through anti-inflammatory and mitochondrial effects. This suggests that drug repurposing of dutasteride might be a promising avenue to treat enteric neuroinflammation in early PD.

1 citations