scispace - formally typeset
Search or ask a question

Showing papers in "Frontiers in Pharmacology in 2022"


Journal ArticleDOI
TL;DR: Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness.
Abstract: Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.

96 citations


Journal ArticleDOI
TL;DR: The results indicated that LIPT1 was differentially expressed in diverse cancers as compared to normal tissues and correlated with the expression of multiple immune checkpoints, especially PD-L1, could serve as a favorable prognosis indicator in some cancer types.
Abstract: Skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) is the most lethal skin cancer with increasing incidence. Regulated cell death plays an important role in tumorigenesis and serves as an important target for almost all treatment strategies. Cuproptosis is the most recently identified copper-dependent regulated cell death form that relies on mitochondria respiration. However, its role in tumorigenesis remains unknown. The correlation of cuproptosis-related genes with tumor prognosis is far to be understood, either. In the present study, we explored the correlation between cuproptosis-related genes with the prognosis of melanoma by accessing and analyzing a public database and found 11 out 12 genes were upregulated in melanoma tissues and three genes (LIPT1, PDHA1, and SLC31A1) have predictive value for the prognosis. The subgroup of melanoma patients with higher cuproptosis-related gene expression showed longer overall survival than those with lower gene expression. We chose LIPT1 for further exploration. LIPT1 expression was increased in melanoma biopsies and was an independent favorable prognostic indicator for melanoma patients. Moreover, LIPT1 expression was positively correlated with PD-L1 expression and negatively associated with Treg cell infiltration. The melanoma patients with higher LIPT1 expression showed longer overall survival than those with lower LIPT1 expression after receiving immunotherapy, indicating the prognostic predictive value of LIPT1. Finally, a pan-cancer analysis indicated that LIPT1 was differentially expressed in diverse cancers as compared to normal tissues and correlated with the expression of multiple immune checkpoints, especially PD-L1. It could serve as a favorable prognosis indicator in some cancer types. In conclusion, our study demonstrated the prognostic value of cuproptosis-related genes, especially LIPT1, in melanoma, and revealed the correlation between LIPT1 expression and immune infiltration in melanoma, thus providing new clues on the prognostic assessment of melanoma patients and providing a new target for the immunotherapy of melanoma.

93 citations


Journal ArticleDOI
TL;DR: In-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research.
Abstract: Graphical Abstract Curcuma longa Linn. (C. longa), popularly known as turmeric, belongs to the Zingiberaceae family and has a long historical background of having healing properties against many diseases. In Unani and Ayurveda medicine, C. longa has been used for liver obstruction and jaundice, and has been applied externally for ulcers and inflammation. Additionally, it is employed in several other ailments such as cough, cold, dental issues, indigestion, skin infections, blood purification, asthma, piles, bronchitis, tumor, wounds, and hepatic disorders, and is used as an antiseptic. Curcumin, a major constituent of C. longa, is well known for its therapeutic potential in numerous disorders. However, there is a lack of literature on the therapeutic potential of C. longa in contrast to curcumin. Hence, the present review aimed to provide in-depth information by highlighting knowledge gaps in traditional and scientific evidence about C. longa in relation to curcumin. The relationship to one another in terms of biological action includes their antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, cardioprotective, immunomodulatory, antifertility, antimicrobial, antiallergic, antidermatophytic, and antidepressant properties. Furthermore, in-depth discussion of C. longa on its taxonomic categorization, traditional uses, botanical description, phytochemical ingredients, pharmacology, toxicity, and safety aspects in relation to its major compound curcumin is needed to explore the trends and perspectives for future research. Considering all of the promising evidence to date, there is still a lack of supportive evidence especially from clinical trials on the adjunct use of C. longa and curcumin. This prompts further preclinical and clinical investigations on curcumin.

57 citations


Journal ArticleDOI
TL;DR: In this paper , the proposed biosynthetic pathways of SPM formation, the current knowledge on SPM receptors and their signaling cascades and the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations are evaluated.
Abstract: Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.

49 citations


Journal ArticleDOI
TL;DR: Results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level.
Abstract: Doxorubicin (DOX) is an anthracycline antibiotic that is used extensively for the management of carcinoma; however, its clinical application is limited due to its serious cardiotoxic side effects. Ferroptosis represents iron-dependent and reactive oxygen species (ROS)-related cell death and has been proven to contribute to the progression of DOX-induced cardiomyopathy. Fisetin is a natural flavonoid that is abundantly present in fruits and vegetables. It has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity in experimental rats. However, the underlying mechanisms remain unknown. The present study investigated the cardioprotective role of fisetin and the underlying molecular mechanism through experiments in the DOX-induced cardiomyopathy rat and H9c2 cell models. The results revealed that fisetin treatment could markedly abate DOX-induced cardiotoxicity by alleviating cardiac dysfunction, ameliorating myocardial fibrosis, mitigating cardiac hypertrophy in rats, and attenuating ferroptosis of cardiomyocytes by reversing the decline in the GPX4 level. Mechanistically, fisetin exerted its antioxidant effect by reducing the MDA and lipid ROS levels and increasing the glutathione (GSH) level. Moreover, fisetin exerted its protective effect by increasing the SIRT1 expression and the Nrf2 mRNA and protein levels and its nuclear translocation, which resulted in the activation of its downstream genes such as HO-1 and FTH1. Selective inhibition of SIRT1 attenuated the protective effects of fisetin in the H9c2 cells, which in turn decreased the GSH and GPX4 levels, as well as Nrf2, HO-1, and FTH1 expressions. In conclusion, fisetin exerts its therapeutic effects against DOX-induced cardiomyopathy by inhibiting ferroptosis via SIRT1/Nrf2 signaling pathway activation.

47 citations


Journal ArticleDOI
TL;DR: The anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile are summarized to highlight the prospect as a lead compound for drug discovery.
Abstract: Nowadays, non-resolving inflammation is becoming a major trigger in various diseases as it plays a significant role in the pathogenesis of atherosclerosis, asthma, cancer, obesity, inflammatory bowel disease, chronic obstructive pulmonary disease, neurodegenerative disease, multiple sclerosis, and rheumatoid arthritis. However, prolonged use of anti-inflammatory drugs is usually accompanied with undesirable effects and hence more patients tend to seek for natural compounds as alternative medicine. Considering the fact above, there is an urgency to discover and develop potential novel, safe and efficacious natural compounds as drug candidates for future anti-inflammatory therapy. Genistein belongs to the flavonoid family, in the subgroup of isoflavones. It is a phytoestrogen that is mainly derived from legumes. It is a naturally occurring chemical constituent with a similar chemical structure to mammalian estrogens. It is claimed to exert many beneficial effects on health, such as protection against osteoporosis, reduction in the risk of cardiovascular disease, alleviation of postmenopausal symptoms and anticancer properties. In the past, numerous in vitro and in vivo studies have been conducted to investigate the anti-inflammatory potential of genistein. Henceforth, this review aims to summarize the anti-inflammatory properties of genistein linking with the signaling pathways and mediators that are involved in the inflammatory response as well as its toxicity profile. The current outcomes are analysed to highlight the prospect as a lead compound for drug discovery. Data was collected using PubMed, ScienceDirect, SpringerLink and Scopus databases. Results showed that genistein possessed strong anti-inflammatory activities through inhibition of various signaling pathways such as nuclear factor kappa-B (NF-κB), prostaglandins (PGs), inducible nitric oxide synthase (iNOS), proinflammatory cytokines and reactive oxygen species (ROS). A comprehensive assessment of the mechanism of action in anti-inflammatory effects of genistein is included. However, evidence for the pharmacological effects is still lacking. Further studies using various animal models to assess pharmacological effects such as toxicity, pharmacokinetics, pharmacodynamics, and bioavailability studies are required before clinical studies can be conducted. This review will highlight the potential use of genistein as a lead compound for future drug development as an anti-inflammatory agent.

45 citations


Journal ArticleDOI
TL;DR: Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies.
Abstract: Type 2 diabetes mellitus (T2DM) continues to be a substantial medical problem due to its increasing global prevalence and because chronic hyperglycemic states are closely linked with obesity, liver disease and several cardiovascular diseases. Since the early discovery of insulin, numerous antihyperglycemic drug therapies to treat diabetes have been approved, and also discontinued, by the United States Food and Drug Administration (FDA). To provide an up-to-date account of the current trends of antidiabetic pharmaceuticals, this review offers a comprehensive analysis of the main classes of antihyperglycemic compounds and their mechanisms: insulin types, biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors (AGIs), thiazolidinediones (TZD), incretin-dependent therapies, sodium-glucose cotransporter type 2 (SGLT2) inhibitors and combinations thereof. The number of therapeutic alternatives to treat T2DM are increasing and now there are nearly 60 drugs approved by the FDA. Beyond this there are nearly 100 additional antidiabetic agents being evaluated in clinical trials. In addition to the standard treatments of insulin therapy and metformin, there are new drug combinations, e.g., containing metformin, SGLT2 inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors, that have gained substantial use during the last decade. Furthermore, there are several interesting alternatives, such as lobeglitazone, efpeglenatide and tirzepatide, in ongoing clinical trials. Modern drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists, DPP4 inhibitors and SGLT2 inhibitors have gained popularity on the pharmaceutical market, while less expensive over the counter alternatives are increasing in developing economies. The large heterogeneity of T2DM is also creating a push towards more personalized and accessible treatments. We describe several interesting alternatives in ongoing clinical trials, which may help to achieve this in the near future.

44 citations


Journal ArticleDOI
TL;DR: The aim of this review is to highlight the role of IL-8 as a biomarker and prognostic factor in modulating the hyperinflammatory response in ARDS.
Abstract: Severe Acute Respiratory Syndrome Coronavirus—2 (SARS CoV-2) has resulted in the global spread of Coronavirus Disease 2019 (COVID-19) and an increase in complications including Acute Respiratory Distress Syndrome (ARDS). Due to the lack of therapeutic options for Acute Respiratory Distress Syndrome, recent attention has focused on differentiating hyper- and hypo-inflammatory phenotypes of ARDS to help define effective therapeutic strategies. Interleukin 8 (IL-8) is a pro-inflammatory cytokine that has a role in neutrophil activation and has been identified within the pathogenesis and progression of this disease. The aim of this review is to highlight the role of IL-8 as a biomarker and prognostic factor in modulating the hyperinflammatory response in ARDS. The crucial role of IL-8 in lung inflammation and disease pathogenesis might suggest IL-8 as a possible new therapeutic target to efficiently modulate the hyperinflammatory response in ARDS.

39 citations


Journal ArticleDOI
TL;DR: Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients withIPF, but these drugs do not cure the disease.
Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive, lethal fibrotic lung disease that occurs primarily in middle-aged and elderly adults. It is a major cause of morbidity and mortality. With an increase in life expectancy, the economic burden of IPF is expected to continuously rise in the near future. Although the exact pathophysiological mechanisms underlying IPF remain not known. Significant progress has been made in our understanding of the pathogenesis of this devastating disease in last decade. The current paradigm assumes that IPF results from sustained or repetitive lung epithelial injury and subsequent activation of fibroblasts and myofibroblast differentiation. Persistent myofibroblast phenotype contributes to excessive deposition of the extracellular matrix (ECM) and aberrant lung repair, leading to tissue scar formation, distortion of the alveolar structure, and irreversible loss of lung function. Treatments of patients with IPF by pirfenidone and nintedanib have shown significant reduction of lung function decline and slowing of disease progression in patients with IPF. However, these drugs do not cure the disease. In this review, we discuss recent advances on the pathogenesis of IPF and highlight the development of novel therapeutic strategies against the disease.

37 citations


Journal ArticleDOI
TL;DR: The effects of the TME on cancer cells and immune cells, especially how cancer cells evade the immune system, are examined, and anti-cancer strategies based on TME are examined.
Abstract: Recently, in the field of cancer treatment, the paradigm has changed to immunotherapy that activates the immune system to induce cancer attacks. Among them, immune checkpoint inhibitors (ICI) are attracting attention as excellent and continuous clinical results. However, it shows not only limitations such as efficacy only in some patients or some indications, but also side-effects and resistance occur. Therefore, it is necessary to understand the factors of the tumor microenvironment (TME) that affect the efficacy of immunotherapy, that is, the mechanism by which cancer grows while evading or suppressing attacks from the immune system within the TME. Tumors can evade attacks from the immune system through various mechanisms such as restricting antigen recognition, inhibiting the immune system, and inducing T cell exhaustion. In addition, tumors inhibit or evade the immune system by accumulating specific metabolites and signal factors within the TME or limiting the nutrients available to immune cells. In order to overcome the limitations of immunotherapy and develop effective cancer treatments and therapeutic strategies, an approach is needed to understand the functions of cancer and immune cells in an integrated manner based on the TME. In this review, we will examine the effects of the TME on cancer cells and immune cells, especially how cancer cells evade the immune system, and examine anti-cancer strategies based on TME.

35 citations


Journal ArticleDOI
TL;DR: Investigation of the supportive intravenous use of supraphysiological doses in acute COVID-19 found an improved oxygenation, a decrease in inflammatory markers and a faster recovery were observed, and early treatment with iv high dose vitamin C seems to reduce the risks of severe courses of the disease and also mortality.
Abstract: Oxidative stress is a pivotal point in the pathophysiology of COVID-19 and presumably also in Long-COVID. Inflammation and oxidative stress are mutually reinforcing each other, thus contributing to the systemic hyperinflammatory state and coagulopathy which are cardinal pathological mechanisms of severe stages. COVID-19 patients, like other critically ill patients e.g. with pneumonia, very often show severe deficiency of the antioxidant vitamin C. So far, it has not been investigated how long this deficiency lasts or whether patients with long COVID symptoms also suffer from deficiencies. A vitamin C deficit has serious pathological consequences because vitamin C is one of the most effective antioxidants, but also co-factor of many enzymatic processes that affect the immune and nervous system, blood circulation and energy metabolism. Because of its anti-oxidative, anti-inflammatory, endothelial-restoring, and immunomodulatory effects the supportive intravenous (iv) use of supraphysiological doses has been investigated so far in 12 controlled or observational studies with altogether 1578 inpatients with COVID-19. In these studies an improved oxygenation, a decrease in inflammatory markers and a faster recovery were observed. In addition, early treatment with iv high dose vitamin C seems to reduce the risks of severe courses of the disease such as pneumonia and also mortality. Persistent inflammation, thrombosis and a dysregulated immune response (auto-immune phenomena and/or persistent viral load) seem to be major contributors to Long-COVID. Oxidative stress and inflammation are involved in the development and progression of fatigue and neuro-psychiatric symptoms in various diseases by disrupting tissue (e.g. autoantibodies), blood flow (e.g. immune thrombosis) and neurotransmitter metabolism (e.g. excitotoxicity). In oncological diseases, other viral infections and autoimmune diseases, which are often associated with fatigue, cognitive disorders, pain and depression similar to Long-COVID, iv high dose vitamin C was shown to significantly relieve these symptoms. Supportive iv vitamin C in acute COVID-19 might therefore reduce the risk of severe courses and also the development of Long-COVID.

Journal ArticleDOI
TL;DR: The current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14 is summarized, including disease associations and inhibitor development.
Abstract: Ubiquitin-specific protease 14 (USP14), a deubiquitinating enzyme (DUB), is associated with proteasomes and exerts a dual function in regulating protein degradation. USP14 protects protein substrates from degradation by removing ubiquitin chains from proteasome-bound substrates, whereas promotes protein degradation by activating the proteasome. Increasing evidence have shown that USP14 is involved in several canonical signaling pathways, correlating with cancer, neurodegenerative diseases, autophagy, immune responses, and viral infections. The activity of USP14 is tightly regulated to ensure its function in various cellular processes. Structural studies have demonstrated that free USP14 exists in an autoinhibited state with two surface loops, BL1 and BL2, partially hovering above and blocking the active site cleft binding to the C-terminus of ubiquitin. Hence, both proteasome-bound and phosphorylated forms of USP14 require the induction of conformational changes in the BL2 loop to activate its deubiquitinating function. Due to its intriguing roles in the stabilization of disease-causing proteins and oncology targets, USP14 has garnered widespread interest as a therapeutic target. In recent years, significant progress has been made on identifying inhibitors targeting USP14, despite the complexity and challenges in improving their selectivity and affinity for USP14. In particular, the crystal structures of USP14 complexed with IU1-series inhibitors revealed the underlying allosteric regulatory mechanism and enabled the further design of potent inhibitors. In this review, we summarize the current knowledge regarding the structure, regulation, pathophysiological function, and selective inhibition of USP14, including disease associations and inhibitor development.

Journal ArticleDOI
TL;DR: In this article , the authors investigated the relationship between therapeutic alliance and rapport, the quality of the acute psychedelic experience and treatment outcomes in a trial of psychedelic-assisted therapy for moderate-severe depressive disorder.
Abstract: Background: Across psychotherapeutic frameworks, the strength of the therapeutic alliance has been found to correlate with treatment outcomes; however, its role has never been formally assessed in a trial of psychedelic-assisted therapy. We aimed to investigate the relationships between therapeutic alliance and rapport, the quality of the acute psychedelic experience and treatment outcomes. Methods: This 2-arm double-blind randomized controlled trial compared escitalopram with psychedelic-assisted therapy for moderate-severe depressive disorder (N = 59). This analysis focused on the psilocybin condition (n = 30), who received two oral doses of 25 mg psilocybin, 3-weeks apart, with psychological preparation, in-session support, and integration therapy. A new psychedelic therapy model, called “Accept-Connect-Embody” (ACE), was developed in this trial. The primary outcome was depression severity 6 weeks post treatment (Quick Inventory of Depressive Symptomatology, QIDS-SR-16). Path analyses tested the hypothesis that therapeutic alliance (Scale To Assess the Therapeutic Relationship Patient Version, STAR-P) would predict depression outcomes via its influence on the acute psychedelic experience, specifically emotional-breakthrough (EBI) and mystical-type experiences (MEQ). The same analysis was performed on the escitalopram arm to test specificity. Results: The strength of therapeutic alliance predicted pre-session rapport, greater emotional-breakthrough and mystical-type experience (maximum EBI and MEQ scores across the two psilocybin sessions) and final QIDS scores (β = −0.22, R 2 = 0.42 for EBIMax; β = −0.19, R 2 = 0.32 for MEQMax). Exploratory path models revealed that final depression outcomes were more strongly affected by emotional breakthrough during the first, and mystical experience during the second session. Emotional breakthrough, but not mystical experience, during the first session had a positive effect on therapeutic alliance ahead of the second session (β = 0.79, p < 0.0001). Therapeutic alliance ahead of the second session had a direct impact on final depression scores, not mediated by the acute experience, with a weaker alliance ahead of the second psilocybin session predicting higher absolute depression scores at endpoint (β = −0.49, p < 0.001) Discussion: Future research could consider therapist training and characteristics; specific participant factors, e.g., attachment style or interpersonal trauma, which may underlie the quality of the therapeutic relationship, the psychedelic experience and clinical outcomes; and consider how therapeutic approaches might adapt in cases of weaker therapeutic alliance. Clinical Trial Registration: This trial is registered at http://clinicaltrials.gov, identifier (NCT03429075).

Journal ArticleDOI
TL;DR: A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Abstract: JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.

Journal ArticleDOI
TL;DR: This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc −/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.
Abstract: The activation of ferroptosis is a new effective way to treat drug-resistant solid tumors. Ferroptosis is an iron-mediated form of cell death caused by the accumulation of lipid peroxides. The intracellular imbalance between oxidant and antioxidant due to the abnormal expression of multiple redox active enzymes will promote the produce of reactive oxygen species (ROS). So far, a few pathways and regulators have been discovered to regulate ferroptosis. In particular, the cystine/glutamate antiporter (System Xc −), glutathione peroxidase 4 (GPX4) and glutathione (GSH) (System Xc −/GSH/GPX4 axis) plays a key role in preventing lipid peroxidation-mediated ferroptosis, because of which could be inhibited by blocking System Xc −/GSH/GPX4 axis. This review aims to present the current understanding of the mechanism of ferroptosis based on the System Xc −/GSH/GPX4 axis in the treatment of drug-resistant solid tumors.

Journal ArticleDOI
TL;DR: Several comparative studies showed that preliminary decomplexation of crude venom by chromatography leads to increased protein identification, as does the use of transcriptomics, and combining different methodological strategies in venomic approaches appears to maximize proteome coverage.
Abstract: Understanding snake venom proteomes is becoming increasingly important to understand snake venom biology, evolution and especially clinical effects of venoms and approaches to antivenom development. To explore the current state of snake venom proteomics and transcriptomics we investigated venom proteomic methods, associations between methodological and biological variability and the diversity and abundance of protein families. We reviewed available studies on snake venom proteomes from September 2017 to April 2021. This included 81 studies characterising venom proteomes of 79 snake species, providing data on relative toxin abundance for 70 species and toxin diversity (number of different toxins) for 37 species. Methodologies utilised in these studies were summarised and compared. Several comparative studies showed that preliminary decomplexation of crude venom by chromatography leads to increased protein identification, as does the use of transcriptomics. Combining different methodological strategies in venomic approaches appears to maximize proteome coverage. 48% of studies used the RP-HPLC →1D SDS-PAGE →in-gel trypsin digestion → ESI -LC-MS/MS pathway. Protein quantification by MS1-based spectral intensity was used twice as commonly as MS2-based spectral counting (33–15 studies). Total toxin diversity was 25–225 toxins/species, with a median of 48. The relative mean abundance of the four dominant protein families was for elapids; 3FTx–52%, PLA2–27%, SVMP–2.8%, and SVSP–0.1%, and for vipers: 3FTx–0.5%, PLA2–24%, SVMP–27%, and SVSP–12%. Viper venoms were compositionally more complex than elapid venoms in terms of number of protein families making up most of the venom, in contrast, elapid venoms were made up of fewer, but more toxin diverse, protein families. No relationship was observed between relative toxin diversity and abundance. For equivalent comparisons to be made between studies, there is a need to clarify the differences between methodological approaches and for acceptance of a standardised protein classification, nomenclature and reporting procedure. Correctly measuring and comparing toxin diversity and abundance is essential for understanding biological, clinical and evolutionary implications of snake venom composition.

Journal ArticleDOI
TL;DR: The main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis are discussed.
Abstract: Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.

Journal ArticleDOI
TL;DR: This review reviews the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.
Abstract: Alzheimer’s disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. The typical pathological characteristics of AD are extracellular senile plaques composed of amyloid ß (Aβ) protein, intracellular neurofibrillary tangles formed by the hyperphosphorylation of the microtubule-associated protein tau, and neuron loss. In the past hundred years, although human beings have invested a lot of manpower, material and financial resources, there is no widely recognized drug for the effective prevention and clinical cure of AD in the world so far. Therefore, evaluating and exploring new drug targets for AD treatment is an important topic. At present, researchers have not stopped exploring the pathogenesis of AD, and the views on the pathogenic factors of AD are constantly changing. Multiple evidence have confirmed that chronic neuroinflammation plays a crucial role in the pathogenesis of AD. In the field of neuroinflammation, the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key molecular link in the AD neuroinflammatory pathway. Under the stimulation of Aβ oligomers and tau aggregates, it can lead to the assembly and activation of NLRP3 inflammasome in microglia and astrocytes in the brain, thereby causing caspase-1 activation and the secretion of IL-1β and IL-18, which ultimately triggers the pathophysiological changes and cognitive decline of AD. In this review, we summarize current literatures on the activation of NLRP3 inflammasome and activation-related regulation mechanisms, and discuss its possible roles in the pathogenesis of AD. Moreover, focusing on the NLRP3 inflammasome and combining with the upstream and downstream signaling pathway-related molecules of NLRP3 inflammasome as targets, we review the pharmacologically related targets and various methods to alleviate neuroinflammation by regulating the activation of NLRP3 inflammasome, which provides new ideas for the treatment of AD.

Journal ArticleDOI
TL;DR: Different types of therapeutic agents that can inhibit the NLRP3 inflammasome are focused on and their pharmacological effectiveness for NAFLD treatment is summarized.
Abstract: Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.

Journal ArticleDOI
TL;DR: This study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm the in vitro findings.
Abstract: Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine, known as anesthetic at high doses, and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-CoV-2. Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm our in vitro findings.

Journal ArticleDOI
TL;DR: A comprehensive overview of the available science on kratom is provided that has the potential to i clarity for healthcare providers and patients and makes recommendations for best practices in working with people who use kratom.
Abstract: Kratom (Mitragyna speciosa Korth., Rubiaceae) is a plant native to Southeast Asia, where it has been used for centuries as a mild stimulant and as medicine for various ailments. More recently, as kratom has gained popularity in the West, United States federal agencies have raised concerns over its safety leading to criminalization in some states and cities. Some of these safety concerns have echoed across media and broad-based health websites and, in the absence of clinical trials to test kratom’s efficacy and safety, considerable confusion has arisen among healthcare providers. There is, however, a growing literature of peer-reviewed science that can inform healthcare providers so that they are better equipped to discuss kratom use with consumers and people considering kratom use within the context of their overall health and safety, while recognizing that neither kratom nor any of its constituent substances or metabolites have been approved as safe and effective for any disease. An especially important gap in safety-related science is the use of kratom in combination with physiologically active substances and medicines. With these caveats in mind we provide a comprehensive overview of the available science on kratom that has the potential to i clarity for healthcare providers and patients. We conclude by making recommendations for best practices in working with people who use kratom.

Journal ArticleDOI
TL;DR: It is confirmed that ferroptosis occurs in chondrocytes under inflammatory conditions, and inhibition of chONDrocyte ferroPTosis can alleviate chond rocyte destruction.
Abstract: Objective: Osteoarthritis (OA) is a common disease with a complex pathology including mechanical load, inflammation, and metabolic factors. Chondrocyte ferroptosis contributes to OA progression. Because iron deposition is a major pathological event in ferroptosis, deferoxamine (DFO), an effective iron chelator, has been used to inhibit ferroptosis in various degenerative disease models. Nevertheless, its OA treatment efficacy remains unknown. We aimed to determine whether DFO alleviates chondrocyte ferroptosis and its effect on OA and to explore its possible mechanism. Methods: Interleukin-1β (IL-1β) was used to simulate inflammation, and chondrocyte ferroptosis was induced by erastin, a classic ferroptosis inducer. A surgical destabilized medial meniscus mouse model was also applied to simulate OA in vivo, and erastin was injected into the articular cavity to induce mouse knee chondrocyte ferroptosis. We determined the effects of DFO on ferroptosis and injury-related events: chondrocyte inflammation, extracellular matrix degradation, oxidative stress, and articular cartilage degradation. Results: IL-1β increased the levels of ROS, lipid ROS, and the lipid peroxidation end product malondialdehyde (MDA) and altered ferroptosis-related protein expression in chondrocytes. Moreover, ferrostatin-1 (Fer-1), a classic ferroptosis inhibitor, rescued the IL-1β–induced decrease in collagen type II (collagen II) expression and increase in matrix metalloproteinase 13 (MMP13) expression. Erastin promoted MMP13 expression in chondrocytes but inhibited collagen II expression. DFO alleviated IL-1β– and erastin-induced cytotoxicity in chondrocytes, abrogated ROS and lipid ROS accumulation and the increase in MDA, improved OA-like changes in chondrocytes, and promoted nuclear factor E2–related factor 2 (Nrf2) antioxidant system activation. Finally, intra-articular injection of DFO enhanced collagen II expression in OA model mice, inhibited erastin-induced articular chondrocyte death, and delayed articular cartilage degradation and OA progression. Conclusion: Our research confirms that ferroptosis occurs in chondrocytes under inflammatory conditions, and inhibition of chondrocyte ferroptosis can alleviate chondrocyte destruction. Erastin-induced chondrocyte ferroptosis can stimulate increased MMP13 expression and decreased collagen II expression in chondrocytes. DFO can suppress chondrocyte ferroptosis and promote activation of the Nrf2 antioxidant system, which is essential for protecting chondrocytes. In addition, ferroptosis inhibition by DFO injection into the articular cavity may be a new OA treatment.

Journal ArticleDOI
TL;DR: Evidence from preclinical and clinical studies on targeting novel non-VEGF angiogenic pathways in breast cancer and several approaches to the normalization of tumor vasculature by targeting pericytes, utilization of microRNAs and extracellular tumor-associate vesicles, using immunotherapeutic drugs, and nanotechnology are described.
Abstract: Angiogenesis is a vital process for the growth and dissemination of solid cancers. Numerous molecular pathways are known to drive angiogenic switch in cancer cells promoting the growth of new blood vessels and increased incidence of distant metastasis. Several angiogenesis inhibitors are clinically available for the treatment of different types of advanced solid cancers. These inhibitors mostly belong to monoclonal antibodies or small-molecule tyrosine kinase inhibitors targeting the classical vascular endothelial growth factor (VEGF) and its receptors. Nevertheless, breast cancer is one example of solid tumors that had constantly failed to respond to angiogenesis inhibitors in terms of improved survival outcomes of patients. Accordingly, it is of paramount importance to assess the molecular mechanisms driving angiogenic signaling in breast cancer to explore suitable drug targets that can be further investigated in preclinical and clinical settings. This review summarizes the current evidence for the effect of clinically available anti-angiogenic drugs in breast cancer treatment. Further, major mechanisms associated with intrinsic or acquired resistance to anti-VEGF therapy are discussed. The review also describes evidence from preclinical and clinical studies on targeting novel non-VEGF angiogenic pathways in breast cancer and several approaches to the normalization of tumor vasculature by targeting pericytes, utilization of microRNAs and extracellular tumor-associate vesicles, using immunotherapeutic drugs, and nanotechnology.

Journal ArticleDOI
TL;DR: The current review highlights and understands the dual role of TGF-β under different cellular conditions and its crosstalk with other signaling pathways in modulating cell fate.
Abstract: A ubiquitously expressed cytokine, transforming growth factor-beta (TGF-β) plays a significant role in various ongoing cellular mechanisms. The gain or loss-of-function of TGF-β and its downstream mediators could lead to a plethora of diseases includes tumorigenesis. Specifically, at the early onset of malignancy TGF-β act as tumour suppressor and plays a key role in clearing malignant cells by reducing the cellular proliferation and differentiation thus triggers the process of apoptosis. Subsequently, TGF-β at an advanced stage of malignancy promotes tumorigenesis by augmenting cellular transformation, epithelial-mesenchymal-transition invasion, and metastasis. Besides playing the dual roles, depending upon the stage of malignancy, TGF-β also regulates cell fate through immune and stroma components. This oscillatory role of TGF-β to fight against cancer or act as a traitor to collaborate and crosstalk with other tumorigenic signaling pathways and its betrayal within the cell depends upon the cellular context. Therefore, the current review highlights and understands the dual role of TGF-β under different cellular conditions and its crosstalk with other signaling pathways in modulating cell fate.

Journal ArticleDOI
TL;DR: This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubuloInterstitial fibrosis by targeting T GF- β/SmAD signaling pathway and presented many challenges and opportunities for inhibiting renal fibrosis in the future.
Abstract: Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.

Journal ArticleDOI
TL;DR: In conclusion, irisin could protect against SA-AKI through ferroptotic resistance via activating the SIRT1/Nrf2 signaling pathway and be weakened by EX527 in vivo and by Sirt1 siRNA in vitro.
Abstract: Kidney is one of the most vulnerable organs in sepsis, resulting in sepsis-associated acute kidney injury (SA-AKI), which brings about not only morbidity but also mortality of sepsis. Ferroptosis is a new kind of death type of cells elicited by iron-dependent lipid peroxidation, which participates in pathogenesis of sepsis. The aim of this study was to verify the occurrence of ferroptosis in the SA-AKI pathogenesis and demonstrate that post-treatment with irisin could restrain ferroptosis and alleviate SA-AKI via activating the SIRT1/Nrf2 signaling pathway. We established a SA-AKI model by cecal ligation and puncture (CLP) operation and an in vitro model in LPS-induced HK2 cells, respectively. Our result exhibited that irisin inhibited the level of ferroptosis and ameliorated kidney injury in CLP mice, as evidenced by reducing the ROS production, iron content, and MDA level and increasing the GSH level, as well as the alteration of ferroptosis-related protein (GPX4 and ACSL4) expressions in renal, which was consistent with the ferroptosis inhibitor ferrostatin-1 (Fer-1). Additionally, we consistently observed that irisin inhibited ROS accumulation, iron production, and ameliorated mitochondrial dysfunction in LPS-stimulated HK-2 cells. Furthermore, our result also revealed that irisin could activate SIRT1/Nrf2 signaling pathways both in vivo and vitro. However, the beneficial effects of irisin were weakened by EX527 (an inhibitor of SIRT1) in vivo and by SIRT1 siRNA in vitro. In conclusion, irisin could protect against SA-AKI through ferroptotic resistance via activating the SIRT1/Nrf2 signaling pathway.

Journal ArticleDOI
TL;DR: This paper reviewed published studies relating closely to bioactive natural products used in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.
Abstract: The devastating COVID-19 pandemic has caused more than six million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.

Journal ArticleDOI
TL;DR: Evidence of the beneficial effects of statins in reducing mortality in hospitalized COVID-19 patients is supported, and Cox proportional-hazards regression models evaluated the association between statin use and mortality rate support the previous evidence.
Abstract: The coronavirus disease-2019 (COVID-19) is caused by SARS-CoV-2, leading to acute respiratory distress syndrome (ARDS), thrombotic complications, and myocardial injury. Statins, prescribed for lipid reduction, have anti-inflammatory, anti-thrombotic, and immunomodulatory properties and are associated with reduced mortality rates in COVID-19 patients. Our goal was to investigate the beneficial effects of statins in hospitalized COVID-19 patients admitted to three multi-specialty hospitals in India from 1 June 2020, to 30 April 2021. This retrospective study included 1,626 patients, of which 524 (32.2%) were antecedent statin users among 768 patients (384 statin users, 384 non-statin users) identified with 1:1 propensity-score matching. We established a multivariable logistic regression model to identify the patients’ demographics and adjust the baseline clinical and laboratory characteristics and co-morbidities. Statin users showed a lower mean of white blood cell count (7.6 × 103/µL vs. 8.1 × 103/µL, p < 0.01), and C-reactive protein (100 mg/L vs. 120.7 mg/L, p < 0.001) compared to non-statin COVID-19 patients. The same positive results followed in lipid profiles for patients on statins. Cox proportional-hazards regression models evaluated the association between statin use and mortality rate. The primary endpoint involved mortality during the hospital stay. Statin use was associated with lower odds of mortality in the propensity-matched cohort (OR 0.52, 95% CI 0.33-0.64, p < 0.001). These results support the previous evidence of the beneficial effects of statins in reducing mortality in hospitalized COVID-19 patients.

Journal ArticleDOI
TL;DR: Safranal is reported here as a potent chemopreventive agent against hepatocellular carcinoma that may soon be an important ingredient of a broad-spectrum cancer therapy.
Abstract: Despite all efforts, an effective and safe treatment for liver cancer remains elusive. Natural products and their derived biomolecules are potential resources to mine for novel anti-cancer drugs. Chemopreventive effects of safranal, a major bioactive ingredient of the golden spice “saffron”, were evaluated in this study against diethylnitrosamine (DEN)–induced liver cancer in rats. Safranal’s mechanisms of action were also investigated in the human liver cancer line “HepG2”. When administered to DEN-treated rats, safranal significantly inhibited proliferation (Ki-67) and also induced apoptosis (TUNEL and M30 CytoDeath). It also exhibited anti-inflammatory properties where inflammatory markers such as NF-kB, COX2, iNOS, TNF-alpha, and its receptor were significantly inhibited. Safranal’s in vivo effects were further supported in HepG2 cells where apoptosis was induced and inflammation was downregulated. In summary, safranal is reported here as a potent chemopreventive agent against hepatocellular carcinoma that may soon be an important ingredient of a broad-spectrum cancer therapy.

Journal ArticleDOI
TL;DR: This project develops best practice guidelines to ensure reproducibility and accurate interpretations of studies using medicinal plant extracts and defines the best practice for reporting the starting plant materials and the chemical methods recommended for defining the chemical compositions of the plant extracts used in such studies.
Abstract: Background: Research on medicinal plants and extracts derived from them differs from studies performed with single compounds. Extracts obtained from plants, algae, fungi, lichens or animals pose some unique challenges: they are multicomponent mixtures of active, partially active and inactive substances, and the activity is often not exerted on a single target. Their composition varies depending on the method of preparation and the plant materials used. This complexity and variability impact the reproducibility and interpretation of pharmacological, toxicological and clinical research. Objectives: This project develops best practice guidelines to ensure reproducibility and accurate interpretations of studies using medicinal plant extracts. The focus is on herbal extracts used in pharmacological, toxicological, and clinical/intervention research. Specifically, the consensus-based statement focuses on defining requirements for: 1) Describing the plant material/herbal substances, herbal extracts and herbal medicinal products used in these studies, and 2) Conducting and reporting the phytochemical analysis of the plant extracts used in these studies in a reproducible and transparent way. The process and methods: We developed the guidelines through the following process: 1) The distinction between the three main types of extracts (extract types A, B, and C), initially conceptualised by the lead author (MH), led the development of the project as such; 2) A survey among researchers of medicinal plants to gather global perspectives, opportunities, and overarching challenges faced in characterising medicinal plant extracts under different laboratory infrastructures. The survey responses were central to developing the guidelines and were reviewed by the core group; 3) A core group of 9 experts met monthly to develop the guidelines through a Delphi process; and. 4) The final draft guidelines, endorsed by the core group, were also distributed for feedback and approval to an extended advisory group of 20 experts, including many journal editors. Outcome: The primary outcome is the “Consensus statement on the Phytochemical Characterisation of Medicinal Plant extracts“ (ConPhyMP) which defines the best practice for reporting the starting plant materials and the chemical methods recommended for defining the chemical compositions of the plant extracts used in such studies. The checklist is intended to be an orientation for authors in medicinal plant research as well as peer reviewers and editors assessing such research for publication.