scispace - formally typeset
Search or ask a question

Showing papers by "Michael E. Brown published in 2001"


Journal ArticleDOI
TL;DR: In this paper, a general method for determining the unbiased inclination distribution of the Kuiper belt using only the inclination and latitude of discovery of known KBOs (KBOs) was developed.
Abstract: We develop a general method for determining the unbiased inclination distribution of the Kuiper belt using only the inclination and latitude of discovery of known Kuiper belt objects (KBOs). These two parameters are well determined for each discovered object, so we can use all 379 known KBOs (as of 2001 January 1)—without knowing the object's precise orbit, area, detection efficiency, or the latitudinal coverage of the survey that found the object—to determine the inclination distribution. We find that a natural analytic form for the inclination distribution is a sine of the inclination multiplied by a Gaussian. The inclination distribution of all KBOs is well fitted by sin i multiplied by a sum of two Gaussians with widths 2°.6^(+.8)_(-.2) and 15° ± 1°. For this inclination distribution, the Kuiper belt has an effective area of 8100^(+1500)-(-1100) deg^2 and a FWHM of 12.5° ± 3.5° in latitude. The inclination distribution of the different dynamical classes appear different. The Plutinos are well fit by sin i mulitplied by a single Gaussian of width 10°.2^(+2.5)_(-1.8), the classical KBOs cannot be fit to a single Gaussian but are well fit by sin i multiplied by the sum of two Gaussians of widths 2°.2^(+.2)_(-.6) and 17° ± 3°, and the scattered KBOs are poorly fit by sin i multiplied by a single Gaussian of width 20° ± 4°. The poor fit of the scattered objects is possibly a result of limitations of the method in dealing with large eccentricities. The effective areas of the Plutinos, classical KBOs, and scattered KBOs are 9300 ± 1800, 6100 ± 2100, and 17000 ± 3000 deg^2, respectively. The FWHMs are 23° ± 5°, 6°.8^(+2.0)_(-3.6), and 44° ± 10°, respectively. In all cases, the inclinations of the Kuiper belt objects appear larger than expected from dynamical simulations of possible perturbations.

344 citations


Journal ArticleDOI
TL;DR: In this paper, the radial distribution of the Kuiper belt objects (KBOs) using a method that is insensitive to observational bias effects is examined. But the radial distance of KBOs is independent of orbital classification or discovery circumstance.
Abstract: We examine the radial distribution of the Kuiper Belt objects (KBOs) using a method that is insensitive to observational bias effects. This technique allows the use of the discovery distances of all KBOs, independent of orbital classification or discovery circumstance. We verify the presence of an outer edge to the Kuiper Belt, as reported in other works, and we measure this edge to be at R = 47 ± 1 AU given any physically plausible model of the size distribution. We confirm that this outer edge is due to the classical KBOs, the most numerically dominant observationally. In addition, we find that current surveys do not preclude the presence of a second, unobserved Kuiper Belt beyond R = 76 AU.

138 citations


Journal ArticleDOI
01 Jun 2001-Icarus
TL;DR: In this paper, the authors measured sodium and potassium abundances in the extended atmospheres of Europa and Io, and derived sodium-to-potassium ratios of 25±2 and 10±3.

109 citations


Journal ArticleDOI
TL;DR: In this article, the authors present spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246 and show that they are the coolest ones known, all with effective temperatures below 4000 K.
Abstract: We present new spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246. Along with F351-50, these white dwarfs are the coolest ones known, all with effective temperatures below 4000 K. Their membership in the Galactic halo population is discussed, and detailed comparisons of all three objects with new atmosphere models are presented. The new models consider the effects of mixed H/He atmospheres and indicate that WD 0346+246 and F351-50 have predominantly helium atmospheres with only traces of hydrogen. LHS 3250 may be a double degenerate whose average radiative temperature is between 2000 and 4000 K, but the new models fail to explain this object.

54 citations


Journal ArticleDOI
TL;DR: In this article, a first attempt at a near-infrared classification scheme for T dwarfs is made, based on the strengths of CH$_4$ and H$_2$O bands and the shapes of the 1.25, 1.6, and 2.1 $\micron$ flux peaks.
Abstract: We present near-infrared spectra for a sample of T dwarfs, including eleven new discoveries made using the Two Micron All Sky Survey. These objects are distinguished from warmer (L-type) brown dwarfs by the presence of methane absorption bands in the 1--2.5 $\micron$ spectral region. A first attempt at a near-infrared classification scheme for T dwarfs is made, based on the strengths of CH$_4$ and H$_2$O bands and the shapes of the 1.25, 1.6, and 2.1 $\micron$ flux peaks. Subtypes T1 V through T8 V are defined, and spectral indices useful for classification are presented. The subclasses appear to follow a decreasing T$_{eff}$ scale, based on the evolution of CH$_4$ and H$_2$O bands and the properties of L and T dwarfs with known distances. However, we speculate that this scale is not linear with spectral type for cool dwarfs, due to the settling of dust layers below the photosphere and subsequent rapid evolution of spectral morphology around T$_{eff}$ $\sim$ 1300--1500 K. Similarities in near-infrared colors and continuity of spectral features suggest that the gap between the latest L dwarfs and earliest T dwarfs has been nearly bridged. This argument is strengthened by the possible role of CH$_4$ as a minor absorber shaping the K-band spectra of the latest L dwarfs. Finally, we discuss one peculiar T dwarf, 2MASS 0937+2931, which has very blue near-infrared colors (J-K$_s$ = $-0.89\pm$0.24) due to suppression of the 2.1 $\micron$ peak. The feature is likely caused by enhanced collision-induced H$_2$ absorption in a high pressure or low metallicity photosphere.

16 citations


Journal ArticleDOI
TL;DR: In this article, column density profiles of Io's sodium corona using 10 mutual eclipses between the Galilean satellites were measured and compared with profiles measured in 1991 and 1985, finding that there has been no significant variation.
Abstract: We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere.

15 citations


01 Feb 2001

11 citations


01 Sep 2001

3 citations


Posted Content
TL;DR: In this article, the authors discuss methods for classifying T dwarfs based on spectral morphological features and indices and conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 K I doublets lines being most valuable.
Abstract: We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 ${\mu}m$. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 ${\mu}m$) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 ${\mu}m$ K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.

2 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246 and show that they are the coolest ones known, all with effective temperatures below 4000 K.
Abstract: We present new spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246. Along with F351-50, these white dwarfs are the coolest ones known, all with effective temperatures below 4000 K. Their membership in the Galactic halo population is discussed, and detailed comparisons of all three objects with new atmosphere models are presented. The new models consider the effects of mixed H/He atmospheres and indicate that WD 0346+246 and F351-50 have predominantly helium atmospheres with only traces of hydrogen. LHS 3250 may be a double degenerate whose average radiative temperature is between 2000 and 4000 K, but the new models fail to explain this object.

2 citations