scispace - formally typeset
N

Nanfang Yu

Researcher at Columbia University

Publications -  186
Citations -  30855

Nanfang Yu is an academic researcher from Columbia University. The author has contributed to research in topics: Semiconductor laser theory & Wavefront. The author has an hindex of 50, co-authored 177 publications receiving 24441 citations. Previous affiliations of Nanfang Yu include Harvard University.

Papers
More filters
Journal ArticleDOI

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Journal ArticleDOI

Flat Optics With Designer Metasurfaces

TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Journal ArticleDOI

Coaxial silicon nanowires as solar cells and nanoelectronic power sources

TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Journal ArticleDOI

Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

TL;DR: The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas.
Journal ArticleDOI

A review of metasurfaces: physics and applications.

TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.