scispace - formally typeset
Search or ask a question

Showing papers by "Paul Langan published in 2002"


Journal ArticleDOI
TL;DR: In this article, the crystal and molecular structure of cellulose Iβ were determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from tunicin.
Abstract: The crystal and molecular structure together with the hydrogen-bonding system in cellulose Iβ has been determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from tunicin. These samples diffracted both synchrotron X-rays and neutrons to better than 1 A resolution (>300 unique reflections; P21). The X-ray data were used to determine the C and O atom positions. The resulting structure consisted of two parallel chains having slightly different conformations and organized in sheets packed in a “parallel-up” fashion, with all hydroxymethyl groups adopting the tg conformation. The positions of hydrogen atoms involved in hydrogen-bonding were determined from a Fourier-difference analysis using neutron diffraction data collected from hydrogenated and deuterated samples. The hydrogen atoms involved in the intramolecular O3···O5 hydrogen bonds have well-defined positions, whereas those corresponding to O2 and O6 covered a wider v...

2,583 citations


Journal ArticleDOI
TL;DR: In this article, the crystal structure of α-glycine has been investigated in the temperature range 288 −427 K using neutron diffraction and the molecular structure does not change significantly and the putative crystallographic phase transition associated with anomalous electrical behaviour in this temperature range is not observed.
Abstract: The crystal structure of α-glycine has been investigated in the temperature range 288–427 K using neutron diffraction. The molecular structure does not change significantly and the putative crystallographic phase transition associated with anomalous electrical behaviour in this temperature range is not observed. The unit cell expands anisotropically with increasing temperature, with the unique monoclinic b axis, corresponding to the stacking direction of molecular layers, changing the most. The increasing separation of antiferroelectric molecular layers with increasing temperature is driven by an increase in molecular libration about an axis that lies perpendicular to the b axis. There is also a weakening of the interlayer hydrogen bonds with temperature. These structural and dynamic changes will affect the response of molecular dipoles to an applied electric field and provide a possible mechanism for the anomalous electrical behaviour.

72 citations