scispace - formally typeset
Search or ask a question

Showing papers by "Peter Fischer published in 1988"


Journal ArticleDOI
TL;DR: In this article, a new route for the synthesis of monoclinic AgO has been developed, yielding, for the first time, coarse crystalline samples which apparently do not show deviations from the ideal composition.
Abstract: A new route for the synthesis of monoclinic AgO has been developed, yielding, for the first time, coarse crystalline samples which apparently do not show deviations from the ideal composition. On electrolysis of aqueous AgF solutions, (cAg+ = 0.03 M, platinum electrodes, 0.65–0.70 V, current density of 100–200 A m−2, 96 °C) AgO forms at the anode as crystals of 1.0 × 0.2 × 0.05 mm in size. The crystal structure has been refined using single-crystal diffractometer data (P21/c; a = 5.8592(19), b = 3.4842(10), c = 5.4995(13) A, β = 107.506(24)°; Z = 4; 739 independent reflections, R = 0.04) and confirmed to have the empirical formula Ag+Ag3+O2. The thermal stability recorded by differential thermal and thermogravimetric analysis techniques is improved over samples prepared previously by chemical oxidation.

41 citations


Journal ArticleDOI
TL;DR: In this paper, a Cherenkov radiator was used to detect visible light emitted from single photoelectron avalanches using a CCD camera coupled with an image intensifier system.
Abstract: UV photons from a Cherenkov radiator are multiplied in a multistep avalanche chamber operating in a gated mode at low gas pressure (40 Torr). The gas mixture is C 2 H 6 -argon ( 80 20 ) and TMAE at 34°C. Visible light emitted from single photoelectron avalanches is detected by a CCD camera coupled to an image intensifier system. The detector was tested with 5 GeV c electrons, using a CH 4 radiator gas at 1 atm. Cherenkov rings essentially free of particle background and of secondary photon feedback were obtained in this mode of operation with a mean number n ≅ 11.5 ( N 0 ≅ 76 cm −1 ). We present this new method and discuss its performance.

29 citations


Journal ArticleDOI
Torsten Paul Ake Åkesson1, S. Almehed2, A. L. S. Angelis3, N. Armenise4, H. Atherton1, P. Aubry5, H. W. Bartels6, G. Beaudoin5, J. M. Beaulieu5, H. Beker1, Odette Benary7, D. Bettoni1, V. Bisi8, I. Blevis9, H. Bøggild1, W. Cleland10, M. Clemen10, B. Collick10, Francois Corriveau11, S. Dagan7, K. Dederichs1, S. Dell'Uomo12, P. Depommier5, R. C. E. Devenish1, N. DiGiacomo13, S. Di Liberto12, J. R. Dodd3, Boris Dolgoshein, A. Drees6, H. En'yo1, B. Erlandsson14, M. J. Esten1, C.W. Fabjan1, Peter Fischer6, Z. Fraenkel9, A. Gaidot, I. Gavrilenko, F. Gibrat-Debu, Paolo Giubellino8, Peter Glassel6, U. Goerlach6, R. Haglund2, L. A. Hamel11, H. W. Van Hecke13, Vincent Hedberg2, R. Heifetz7, A. Holscher6, B. V. Jacak13, G. Jarlskog11, Sverker Johansson2, A. Kalinovski, A. Kantserov, H. Kramer15, V. Kroh6, F. Lamarche11, C. Leroy11, L. Lessard3, D. Lissauer15, G. London, B. Lörstad2, A. Lounis5, A. Marzarichiesa7, M. Masera7, S. Mayburov, M. A. Mazzoni1, E. Mazzucato11, M. L. McCubbin3, N. A. McCubbin16, P. McGaughey13, Franco Meddi12, Ulf Mjörnmark2, M. T. Muciaccia4, S. Muraviev, M. Murray10, Matthias Neubert6, P. Nevski, Sven Gösta Nilsson1, L. Olsen15, Yona Oren7, J. P. Pansart, Y. M. Park10, A. Pfeiffer6, F. Piuz1, Venetios Polychronakos15, Gilbert Poulard1, M. J. Price1, D.C. Rahm15, L. Ramello8, L. Riccati8, G. Romano17, G. Rosa12, J. Russ1, Jurgen Schukraft1, M. Sekimoto1, B. Sellden14, M. Seman1, A. Shmeleva, P. Shotton1, V. Sidorov, S. Simone4, Y. Sirois11, H. Sletten1, Sergei Smirnov, W. Sondheim13, H. J. Specht6, I. Stumer15, A. Sumarokov, J. Sunier13, V. Tcherniatin, Hans Henrik Thodberg1, J. A. Thompson10, V. Tikhomirov, I. Tserruya9, G. Vasseur, R. Veenhof1, Richard Wigmans1, W. J. Willis1 
TL;DR: In this article, the authors measured the transverse energy distributions of the 32 S nucleus with Al, Ag, W, Pt, Pb, and U target nuclei, at an incident energy of 200 GeV per nucleon.

26 citations


Journal ArticleDOI
Torsten Paul Ake Åkesson1, S. Almehed2, A. L. S. Angelis3, N. Armenise4, H. Atherton1, P. Aubry5, H. W. Bartels6, J. H. Bartley3, G. Beaudoin5, J. M. Beaulieu5, H. Beker7, H. Beker1, Odette Benary8, D. Bettoni1, V. Bisi9, I. Blevis10, H. Bøggild11, H. Bøggild1, Amos Breskin10, R. Chechik10, W. E. Cleland12, M. Clemen12, B. Collick12, Francois Corriveau13, S. Dagan8, K. Dederichs1, S. Dell'Uomo14, P. Depommier5, R.C.E. Devenish15, S. Di Liberto14, N. Di Giacomo16, J. R. Dodd3, Boris Dolgoshein, A. Dress6, H. En'yo1, B. Erlandsson17, M. J. Esten1, C.W. Fabjan1, M. Faessler1, Peter Fischer6, Z. Fraenkel10, A. Gaidot, I. Gavrilenko, F. Gibrat-Debu, Paolo Giubellino9, Peter Glassel6, U. Goerlach6, R. Haglund2, L. A. Hamel13, H. W. Van Hecke16, Vincent Hedberg2, R. Heifetz8, F.F. Heymann3, A. Holscher6, Stephan J. Huber6, B. V. Jacak16, G. Jarslkog2, Sverker Johansson2, A. Kalinovski, A. Kantserov, H. Kraner18, V. Kroh6, F. Lamarche13, C. Leroy13, D. Lissauer18, G. London, B. Lörstad2, A. Lounis5, T. Ludlam18, A. Marzari-Chiesa9, Massimo Masera9, S. Mayburov, M. A. Mazzoni1, M. L. McCubbin3, N. A. McCubbin19, P. McGaughey16, Franco Meddi14, Ulf Mjörnmark2, M. T. Muciaccia4, M. Murray12, Matthias Neubert6, P. Nevski, S. Nilsson17, L. Olsen18, Yona Oren8, J. P. Pansart, Y. M. Park12, A. Pfeiffer6, F. Piuz1, Venetios Polychronakos18, Gilbert Poulard1, M. J. Price1, D.C. Rahm18, L. Ramello9, L. Riccati9, H. Ries6, G. Romano14, G. Romano20, R. Roosen, G. Rosa14, J. Russ1, J. Russ21, Jurgen Schukraft1, M. Sekimoto1, B. Sellden17, M. Seman1, A. Shmeleva, P. Shotton1, V. Sidorov, S. Simone4, Y. Sirois13, H. Sletten1, Sergei Smirnov, J. Soltani6, W. Sondheim16, H. J. Specht6, I. Stumer18, A. Sumarokov, J. Sunier16, V. Tcherniatin, Hans Henrik Thodberg1, J. A. Thompson12, V. Tikhomirov, P. T. Trent3, I. Tserruya10, Richard Wigmans1, W. J. Willis1 
TL;DR: In this article, the authors measured the transverse energy distributions in the pseudorapidity region −0.1<ηγγγη ≥ 2.9 for oxygen-nucleus collisions at incident energies of 60 and 200 GeV per nucleon for Al, Ag, and W targets.
Abstract: Transverse-energy distributions have been measured in the pseudorapidity region −0.1<η lab<2.9 for oxygen-nucleus collisions at incident energies of 60 and 200 GeV per nucleon for Al, Ag, and W target nuclei. The cross-section for the heaviest target nuclei at the highest incident energy is measured over 5 orders of magnitude and out to a maximumE T of 200 GeV. Measurements of the differential densitydE T/dη lab as a function ofη lab are presented. In the pseudorapidity region −0.1<η lab<2.9 the transverse energy for an average central collision is proportional to ≈A 0.5, while the fraction of the total transverse energy measured in an extended region ofη lab>2.9 decreases with increasingA. The distributions are compared with the predictions of a dual parton model. Finally the question of the energy density is addressed.

15 citations


Journal ArticleDOI
TL;DR: A low-pressure multistep, TMAE-filled, UV-sensitive detector has been developed for Cerenkov ring imaging for ultrarelativistic heavy-ion experiments (HELIOS-CERN).
Abstract: A low-pressure multistep, TMAE-filled, UV-sensitive detector has been developed for Cerenkov ring imaging for ultrarelativistic heavy-ion experiments (HELIOS-CERN). A description is given of the detector structure and its basic properties, and the experimental setup and the detector performance in tests with high-energy electrons are presented. Three modes of readout are used: three-wire coordinates and flash analog-to-digital converters; pad readout; and optical recording of the avalanches. Single photons can be localized with an accuracy of sigma approximately=2 mm, mainly due to single-photoelectron diffusion and to chromatic dispersion in the radiator gas. The experimental N/sub 0/ values obtained by the three methods are close to those expected, taking into account the various losses due to the test conditions. >

14 citations


Journal ArticleDOI
Francois Corriveau1, Torsten Paul Ake Åkesson2, S. Almehed3, A. L. S. Angelis4, N. Armenise5, H. Atherton2, P. Aubry6, H. W. Bartels7, J. H. Bartley4, G. Beaudoin6, J. M. Beaulieu6, H. Beker2, Odette Benary8, D. Bettoni2, V. Bisi9, I. Blevis10, H. Bøggild2, Amos Breskin10, R. Chechik10, W. E. Cleland11, M. Clemen11, B. Collick11, S. Dagan8, K. Dederichs2, S. Dell'Uomo12, P. Depommier6, R.C.E. Devenish13, S. DiLiberto12, N. DiGiacomo14, J. R. Dodd4, Boris Dolgoshein, A. Dress7, H. En'yo2, B. Erlandsson15, M. J. Esten2, C.W. Fabjan2, M. Faessler2, Peter Fischer7, Z. Fraenkel10, A. Gaidot, I. Gavrilenko, F. Gibrat-Debu, Paolo Giubellino9, Peter Glassel7, U. Goerlach7, R. Haglund3, L. A. Hamel1, H. Hecke1, Vincent Hedberg3, R. Heifetz8, F.F. Heymann4, A. Hölscher3, Stephan J. Huber7, B. V. Jacak14, Göran Jarlskog3, Sverker Johansson3, A. Kalinovski, A. Kantserov, H. Kramer16, V. Kroh7, F. Lamarche1, C. Leroy1, D. Lissauer16, G. London, B. Lörstad3, A. Lounis6, T. Ludlam16, A. Marzari-Chiesa9, Massimo Masera9, S. Mayburov, M. A. Mazzoni2, M. L. McCubbin4, N. A. McCubbin17, P. McGaughey14, Franco Meddi12, Ulf Mjörnmark3, M. T. Muciaccia5, M. Murray11, Matthias Neubert7, P. Nevski, S. Nilsson15, L. Olsen16, Yona Oren8, J. P. Pansart, Y. M. Park11, A. Pfeiffer7, F. Piuz2, Venetios Polychronakos16, Gilbert Poulard2, M. J. Price2, D.C. Rahm16, L. Ramello9, L. Riccati9, H. Ries7, G. Romano12, R. Roosen, G. Rosa12, J. Russ2, Jurgen Schukraft2, M. Sekimoto2, B. Sellden15, M. Seman2, A. Shmeleva, P. Shotton2, V. Sidorov2, S. Simone5, Y. Sirois1, H. Sletten2, Sergei Smirnov, J. Soltani7, W. Sondheim14, H. J. Specht7, I. Stumer16, A. Sumarokov, J. Sunier14, V. Tcherniatin, Hans Henrik Thodberg2, J. A. Thompson11, V. Tikhomirov, P. T. Trent4, I. Tserruya10, Richard Wigmans2, W. J. Willis2 
TL;DR: In this paper, the transverse energy distributions have been measured in the pseudo-rapidity region −0.1 > ηlab <2.9 for oxygen-nucleus collisions of incident energies of 60 and 200 GeV per nucleon for Al, Ag, and W target nuclei.
Abstract: Transverse-energy distributions have been measured in the pseudo-rapidity region −0.1 >ηlab <2.9 for oxygen-nucleus collisions of incident energies of 60 and 200 GeV per nucleon for Al, Ag, and W target nuclei. We present a summary of the results and a comparison to theoretical model descriptions.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the application of low-pressure two-step gas detectors to the ring-imaging Cherenkov (RICH) technique is demonstrated, and the advantages of using this method in high background experiments, such as in relativistic heavy ion collisions, are discussed.
Abstract: The application of low-pressure two-step gas detectors to the ring-imaging Cherenkov (RICH) technique is demonstrated. A RICH prototype with a UV-photon detector of 20×20 cm2, filled with 53 mbar of C2H6 + TMAE at 30°C, was exposed to 3 GeV c electrons. Photoelectrons were localized with a FADC system with a spatial resolution of 2 mm rms. The ring reconstruction technique is presented. The advantages of using this method in high background experiments, such as in relativistic heavy ion collisions, are discussed.

7 citations


Book ChapterDOI
01 Jan 1988
TL;DR: Alzheimer’s disease affects 1% of the population of the Western world and 100% of aged individuals with Down's syndrome and it is characterized by neuronal dysfunction and depositions of amyloid A4 in the form of intracellular neurofibrillary tangles, extracellular plaques and cerebrovascular amyloids.
Abstract: Alzheimer’s disease affects 1% of the population of the Western world and 100% of aged individuals with Down’s syndrome. It is characterized by neuronal dysfunction and depositions of. amyloid A4 protein (β-protein) in the form of intracellular neurofibrillary tangles, extracellular plaques and cerebrovascular amyloid. Amyloid A4 is a self-aggregating protein that consists of 42–43 residues. “Reverse genetics” based on the sequence of amyloid A4 protein has indicated that the amyloid protein is encoded as part of a larger protein by a gene on chromosome 21. Recent cloning studies have indicated that the amyloid precursor gene encodes at least three alternatively spliced products.

2 citations


Book ChapterDOI
01 Jan 1988
TL;DR: The major protein subunit of the amyloid fibril in Alzheimer's disease is a small molecule of 42 residues (termed A4), which is derived from a larger precursor (PreA4), the gene for which is located on chromosome 21, in close proximity to the region involved in Down’s syndrome.
Abstract: The major protein subunit of the amyloid fibril in Alzheimer’s disease is a small molecule of 42 residues (termed A4). It is derived from a larger precursor (PreA4), the gene for which is located on chromosome 21, in close proximity to the region involved in Down’s syndrome. The predicted structure of PreA4 suggests that it is an integral membrane glycoprotein. Knowledge of the mechanisms by which PreA4 is degraded to A4 may contribute to a better understanding of the cause of Alzheimer’s disease. Similarly, the amyloid fibril in the unconventional virus diseases is composed of the PrP molecule, which in turn is derived from a neuronal membrane glycoprotein. An understanding of the process by which the PrP molecule is converted into an amyloidogenic molecule may shed some light on the nature of the infectious unit.

1 citations