scispace - formally typeset
Search or ask a question
Author

Pundlik Rambhau Bhagat

Other affiliations: AstraZeneca
Bio: Pundlik Rambhau Bhagat is an academic researcher from VIT University. The author has contributed to research in topics: Catalysis & Ionic liquid. The author has an hindex of 19, co-authored 74 publications receiving 946 citations. Previous affiliations of Pundlik Rambhau Bhagat include AstraZeneca.


Papers
More filters
Book ChapterDOI
01 Jan 2017
TL;DR: In this article, the preparation and dielectric behavior of various biopolymer composites is presented, including metal nanoparticles and carbon-based nanofillers such as carbon nanotubes, graphene, etc.
Abstract: In recent years, there is a growing interest in studying the dielectric behavior of biopolymer composites due to their potential application as a dielectric material in various electronic devices such as microchips, transformers, and circuit boards. Conducting electroactive polymer composites have also been investigated for various potential applications which include biological, biomedical, flexible electrodes, display devices, biosensors, and cells for tissue engineering. In this chapter, the preparation and dielectric behavior of various biopolymer composites is presented. These biopolymer composites generally consist of nanoscale metal nanoparticles and carbon-based nanofillers such as carbon nanotubes, graphene, graphene oxide (GO), etc., dispersed into the polymer matrix. The physical and chemical properties of these fillers and their interactions with polymers have a significant effect on the microstructure and the final properties of nanocomposites. The biopolymer composites with excellent dielectric properties show great promise as an energy storage dielectric layer in high-performance capacitor applications such as embedded capacitors. This chapter highlights some of the examples of such biopolymer composites; their processing and dielectric behavior will be discussed in detail.

149 citations

Journal ArticleDOI
TL;DR: This review summarises the medicinal as well as pharmacological approach to the anticancer properties of metal NHC complexes.

105 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the fabrication and characterizations of flexible dielectric nanocomposites consisting of water soluble polypyrrole (WPPy)/polyvinyl alcohol (PVA)/graphene oxide (GO) at different GO loadings (0.5-3 wt%).
Abstract: In the present study, we report the fabrication and characterizations of flexible dielectric nanocomposites consisting of water soluble polypyrrole (WPPy)/polyvinyl alcohol (PVA)/graphene oxide (GO) at different GO loadings (0.5–3 wt%). The WPPy/PVA/GO nanocomposites were characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-vis spectroscopy (UV), X-ray diffraction (XRD), thermogravimetric analysis (TGA), polarized optical microscopy (POM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). FTIR studies indicate the strong chemical interaction between GO and polymer systems. SEM results confirm that GO was homogeneously dispersed within the polymer matrix. The nanocomposites exhibit significant enhancement in the dielectric constant with low dielectric loss values as a function of GO loading which resulted from the fine dispersion of GO in the polymer matrix. The dielectric constant increases from (e = 27.93, 50 Hz, 150 °C) for WPPy/PVA (50/50) blend to (e = 155.18, 50 Hz, 150 °C) for nanocomposites with 3 wt% GO loading and the dielectric loss increases from (tan δ = 2.01, 50 Hz, 150 °C) for WPPy/PVA (50/50) blend to (tan δ = 4.71, 50 Hz, 150 °C) for nanocomposites with 3 wt% GO loading. Thus, these high-κ WPPy/PVA/GO nanocomposites are potential flexible high-performance dielectric materials for electronic devices such as high-frequency capacitors or embedded capacitors.

92 citations

Journal ArticleDOI
TL;DR: In this article, polyvinyl alcohol/potassium chromate (K2CrO4) composite films were prepared by solution casting technique using distilled water as a solvent, and were further investigated using Fourier transform infrared spectroscopy, ultraviolet-visible spectrograph, X-ray diffraction, thermogravimetric analysis, optical microscopy, scanning electron microscopy and dielectric measurements.
Abstract: Polyvinyl alcohol/potassium chromate (K2CrO4) composite films were prepared by solution casting technique using distilled water as a solvent, and were further investigated using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction, thermogravimetric analysis, optical microscopy, scanning electron microscopy, and dielectric measurements. Microscopic studies reveal that K2CrO4 was homogenously mixed with polyvinyl alcohol matrix due to interfacial interaction between polyvinyl alcohol and K2CrO4. The composite films showed very high dielectric constant and relatively low dielectric loss. Hence, such composite materials with improved dielectric properties could be useful for fabrication of electrical charge storage device.

65 citations

Journal ArticleDOI
01 Nov 2018-Fuel
TL;DR: In this article, two Bronsted acidic ionic liquid (IL) catalysts containing benzimidazolium and imidazolate cation and two basic IL catalysts have been prepared.

45 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, various technologies currently used for dewatering microalgal cultures along with a comparative study of the performances of the different technologies are reviewed and compared, as well as a comparison of the performance of different technologies.
Abstract: Microalgae dewatering is a major obstruction to industrial-scale processing of microalgae for biofuel prodn. The dil. nature of harvested microalgal cultures creates a huge operational cost during dewatering, thereby, rendering algae-based fuels less economically attractive. Currently there is no superior method of dewatering microalgae. A technique that may result in a greater algal biomass may have drawbacks such as a high capital cost or high energy consumption. The choice of which harvesting technique to apply will depend on the species of microalgae and the final product desired. Algal properties such as a large cell size and the capability of the microalgae to autoflocculate can simplify the dewatering process. This article reviews and addresses the various technologies currently used for dewatering microalgal cultures along with a comparative study of the performances of the different technologies.

851 citations

Journal ArticleDOI
TL;DR: In this paper, the EMI shielding effectiveness of flexible polymer composites comprising of metals and various forms of carbon nanofillers such as carbon black, carbon nano-frillers, carbon nanotubes, graphite, graphene, graphene oxide, graphene nanosheets and graphene nanoribbons has been deeply reviewed.
Abstract: The rapid proliferation and elevated usage of electronic devices have led to a meteoritic rise in electronic pollutions such as electronic noise, electromagnetic interference (EMI) and radiofrequency interference (RFI) which leads to improper functioning of electronic devices. Metals and their alloys can serve as the best EMI shielding materials but their heavy weight, high cost and low corrosion resistance have limited their applications in EMI shielding. The emergence of flexible polymer composites have substituted the metal and metal alloy based EMI shielding materials due to their unique features such as light weight, excellent corrosion resistance, superior electrical, dielectric, thermal, mechanical and magnetic properties that are highly useful for suppressing the electromagnetic noises. In this review article, the EMI shielding effectiveness of flexible polymer composites comprising of metals and various forms of carbon nanofillers such as carbon black, carbon nanofibers, carbon nanotubes, graphite, graphene, graphene oxide, graphene nanosheets, graphene nanoribbons and graphene nanoplatelets have been deeply reviewed.

466 citations

Journal ArticleDOI
TL;DR: This review highlights the most recent outcomes on ILs in several important typical oxidation reactions, arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, and oxidation of alkanes, or their combinations.
Abstract: Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as “biphasic catalyst” or “immobilized catalyst” by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stabili...

348 citations