scispace - formally typeset
Search or ask a question

Showing papers by "Ranjala Ratnayake published in 2019"


Journal ArticleDOI
TL;DR: Bilorphin is a potent and selective highly G protein-biased agonist of the μ-opioid receptor (MOPr) agonist and a promising lead in the development of next generation analgesics.
Abstract: An Australian estuarine isolate of Penicillium sp. MST-MF667 yielded 3 tetrapeptides named the bilaids with an unusual alternating LDLD chirality. Given their resemblance to known short peptide opioid agonists, we elucidated that they were weak (Ki low micromolar) μ-opioid agonists, which led to the design of bilorphin, a potent and selective μ-opioid receptor (MOPr) agonist (Ki 1.1 nM). In sharp contrast to all-natural product opioid peptides that efficaciously recruit β-arrestin, bilorphin is G protein biased, weakly phosphorylating the MOPr and marginally recruiting β-arrestin, with no receptor internalization. Importantly, bilorphin exhibits a similar G protein bias to oliceridine, a small nonpeptide with improved overdose safety. Molecular dynamics simulations of bilorphin and the strongly arrestin-biased endomorphin-2 with the MOPr indicate distinct receptor interactions and receptor conformations that could underlie their large differences in bias. Whereas bilorphin is systemically inactive, a glycosylated analog, bilactorphin, is orally active with similar in vivo potency to morphine. Bilorphin is both a unique molecular tool that enhances understanding of MOPr biased signaling and a promising lead in the development of next generation analgesics.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed an anti-pancreatic cancer agent which potently inhibited the growth of both established and patient-derived primary pancreatic cancer cells by demonstrating the downregulation of multiple receptor tyrosine kinases and inhibition of growth factor and cytokine secretion.
Abstract: Despite the significant progress in the field of cancer therapeutics, the incidence of pancreatic cancer (PC) has continuously increased. One possible mechanism for this increasing burden is impaired drug delivery and drug resistance resulting from a unique tumor microenvironment and genetic mutations. Apratoxins are potent anticancer agents and cotranslational translocation inhibitors with potential therapeutic applications to treat cancers with active secretory pathways. Here, we developed apratoxin S10 (Apra S10) as an anti-pancreatic cancer agent which potently inhibited the growth of both established and patient-derived primary pancreatic cancer cells. We validated its mechanism of action on pancreatic cancer cells by demonstrating the downregulation of multiple receptor tyrosine kinases and inhibition of growth factor and cytokine secretion. Apra S10 also inhibited a number of cytokines secreted by stromal cells, suggesting that Apra S10 not only inhibited pancreatic cancer cell secretion, but also reduced the level of factors secreted by other cell types active within the tumor microenvironment. As Apra S10 tissue distribution indicated its high enrichment in pancreas tissue, an orthotopic pancreatic patient-derived xenograft mouse model that closely mimics the human pancreatic tumor microenvironment was for the first time used in apratoxin studies. Apra S10 showed promising antitumor effect in this pancreatic cancer model and this effect was mediated through anti-proliferation properties.

23 citations


Journal ArticleDOI
01 Jan 2019-Synlett
TL;DR: The total synthesis of endolides A and B has been achieved in a concise, highly stereoselective fashion (12 steps, 16.2% and 16.0% overall yields, respectively).
Abstract: The total synthesis of endolides A and B has been achieved in a concise and highly stereoselective fashion (12 steps; 16.2 and 16.0% overall yield, respectively). Key features of the route include a modified Negishi coupling between 3-bromofuran and an organozinc reagent derived from an iodoalanine derivative for the synthesis of a 3-(3-furyl)alanine derivative, and a judicious choice of reaction conditions to overcome the conformational constraints placed by converting a linear peptide into the corresponding macrocycle.

2 citations