scispace - formally typeset
Search or ask a question

Showing papers by "Ray A. Bressan published in 2017"


Journal ArticleDOI
TL;DR: Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome.
Abstract: Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca2+]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome.

54 citations


Journal ArticleDOI
TL;DR: This work focuses on how the long-term ABA responses contribute to plant survival during severe drought stress and investigates the role of cuticular wax in this response.
Abstract: Drought stress is a condition that in specific climate contexts results in insufficient water availability and often limits plant productivity through perturbing development and reducing plant growth and survival. Plants use senescence of old leaves and dormancy of buds and seeds to survive extreme environmental conditions. The plant hormone ABA accumulates after drought stress, and increases plant survival by inducing quick responses such as stomatal closure, and long-term responses such as extended growth inhibition, osmotic regulation, accumulation of cuticular wax, senescence, abscission and dormancy. Here we focus on how the long-term ABA responses contribute to plant survival during severe drought stress. Leaf senescence and abscission of older leaves reduce total plant transpirational water loss and increase the transfer of nutrients to meristems and to some storage tissues. Osmotic regulation favors water consumption in sink tissues, and accumulation of cuticular wax helps to seal the plant surface and limits non-stomatal water loss.

50 citations