scispace - formally typeset
R

Richard Phillips Feynman

Researcher at California Institute of Technology

Publications -  192
Citations -  62387

Richard Phillips Feynman is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Feynman diagram & Liquid helium. The author has an hindex of 77, co-authored 192 publications receiving 58881 citations. Previous affiliations of Richard Phillips Feynman include Massachusetts Institute of Technology & Cornell University.

Papers
More filters
Book

Quantum Mechanics and Path Integrals

TL;DR: Au sommaire as discussed by the authors developed the concepts of quantum mechanics with special examples and developed the perturbation method in quantum mechanics and the variational method for probability problems in quantum physics.
Journal ArticleDOI

Simulating physics with computers

TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Journal ArticleDOI

Space-Time Approach to Non-Relativistic Quantum Mechanics

TL;DR: In this paper, the authors formulated non-relativistic quantum mechanics in a different way and showed that the probability of an event which can happen in several different ways is the absolute square of a sum of complex contributions, one from each alternative way.
Journal ArticleDOI

Forces in molecules

TL;DR: In this article, it was shown that the force on a nucleus in an atomic system is just the classical electrostatic force that would be exerted on this nucleus by other nuclei and by the electrons' charge distribution.
Journal ArticleDOI

The Theory of a general quantum system interacting with a linear dissipative system

TL;DR: In this paper, a formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only.