scispace - formally typeset
Search or ask a question

Showing papers by "Robin A. de Graaf published in 2017"


Journal ArticleDOI
TL;DR: It is reported that IDH1/2 mutations induce a homologous recombination defect that renders tumor cells exquisitely sensitive to poly(adenosine 5′-diphosphate–ribose) polymerase (PARP) inhibitors, and an unexpected link between oncometabolites, altered DNA repair, and genetic instability is uncovered.
Abstract: 2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)-dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5'-diphosphate-ribose) polymerase (PARP) inhibitors. This "BRCAness" phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1-dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability.

394 citations


Journal ArticleDOI
TL;DR: The relevance of B0 homogeneity for in vivo MRS is described and common concepts and specific solutions for its experimental optimization are summarized.

71 citations


Journal ArticleDOI
TL;DR: To determine the reproducibility of a comprehensive single‐session measurement of glutathione (GSH), γ‐aminobutyric acid (GABA), glutamate, and other biochemicals implicated in the pathophysiology of multiple sclerosis in the human brain with 1H magnetic resonance spectroscopy (MRS).
Abstract: Purpose To determine the reproducibility of a comprehensive single-session measurement of glutathione (GSH), γ-aminobutyric acid (GABA), glutamate, and other biochemicals implicated in the pathophysiology of multiple sclerosis (MS) in the human brain with 1 H magnetic resonance spectroscopy (MRS). Materials and methods Five healthy subjects were studied twice in separate 1-hour sessions at 7T. One MS patient was also scanned once. GSH and GABA were measured with J-difference editing using a semilocalized by adiabatic selective refocusing sequence (semi-LASER, TE = 72 msec). A stimulated echo acquisition mode sequence (STEAM, TE = 10 msec) was used to detect glutamate along with the overall biochemical profile. Spectra were quantified with LCModel. Quantification accuracy was assessed through Cramer-Rao lower bounds (CRLB). Reproducibility of the metabolite quantification was tested using coefficients of variation (CoV). Results CRLB were ≤7% for GSH, GABA, and glutamate and average CoV of 7.8 ± 3.2%, 9.5 ± 7.0%, and 3.2 ± 1.7% were achieved, respectively. The average test/retest concentration differences at this measurement reproducibility and quantification accuracy were smaller for GABA and glutamate than intersubject variations in metabolite content with CoV ratios of 0.6 and 0.8, respectively. As proof of principle, GSH, GABA, and glutamate were also detected in an MS patient. Conclusion GSH, GABA, glutamate, and other metabolites relevant in MS can be quantified at 7T with high accuracy and reproducibility in a single 1-hour session. This methodology might serve as a clinical research tool to investigate biochemical markers associated with MS. Level of evidence 2 J. Magn. Reson. Imaging 2017;45:187-198.

69 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify early metabolic features of insulin resistance (IR) in youth and whether they predict deterioration of glycemic control, and their findings provide potential biomarkers for risk assessment of type 2 diabetes and new insights into IR pathogenesis.
Abstract: Context Traditional risk factors for type 2 diabetes mellitus are weak predictors of changes in glucose tolerance and insulin sensitivity in youth. Objective To identify early metabolic features of insulin resistance (IR) in youth and whether they predict deterioration of glycemic control. Design and Setting A cross-sectional and longitudinal study was conducted at the Yale Pediatric Obesity Clinic. Patients and Intervention Concentrations of α-hydroxybutyrate, β-hydroxybutyrate, lactate, and branched-chain amino acids (BCAAs) were measured by nuclear magnetic resonance spectroscopy in 78 nondiabetic adolescents during an oral glucose tolerance test (OGTT). Associations between baseline metabolic alterations and longitudinal changes in glucose control were tested in 16 subjects after a mean follow-up of 2.3 years. Main Outcome Measures The relationship between metabolite levels, parameters of IR, and glycemic control, and their progression over time. Results Elevated fasting α-hydroxybutyrate levels were observed in adolescents with reduced insulin sensitivity after adjusting for age, sex, ethnicity, Tanner stage, and body mass index z-score (P = 0.014). Plasma α-hydroxybutyrate and BCAAs were increased throughout the course of the OGTT in this group (P < 0.03). Notably, borderline IR was associated with a progressive α-hydroxybutyrate decrease from elevated baseline concentrations to normal levels (P = 0.02). Increased baseline α-hydroxybutyrate concentrations were further associated with progressive worsening of glucose tolerance and disposition index. Conclusion α-Hydroxybutyrate and BCAA concentrations during an OGTT characterize insulin-resistant youth and predict worsening of glycemic control. These findings provide potential biomarkers for risk assessment of type 2 diabetes and new insights into IR pathogenesis.

59 citations


Journal ArticleDOI
TL;DR: To develop 1H‐based MR detection of nicotinamide adenine dinucleotide (NAD+) in the human brain at 7T and validate the 1H results with NAD+ detection based on 31P‐MRS.
Abstract: PURPOSE To develop 1 H-based MR detection of nicotinamide adenine dinucleotide (NAD+ ) in the human brain at 7T and validate the 1 H results with NAD+ detection based on 31 P-MRS. METHODS 1 H-MR detection of NAD+ was achieved with a one-dimensional double-spin-echo method on a slice parallel to the surface coil transceiver. Perturbation of the water resonance was avoided through the use of frequency-selective excitation. 31 P-MR detection of NAD+ was performed with an unlocalized pulse-acquire sequence. RESULTS Both 1 H- and 31 P-MRS allowed the detection of NAD+ signals on every subject in 16 min. Spectral fitting provided an NAD+ concentration of 107 ± 28 μM for 1 H-MRS and 367 ± 78 μM and 312 ± 65 μM for 31 P-MRS when uridine diphosphate glucose (UDPG) was excluded and included, respectively, as an overlapping signal. CONCLUSIONS NAD+ detection by 1 H-MRS is a simple method that comes at the price of reduced NMR visibility. NAD+ detection by 31 P-MRS has near-complete NMR visibility, but it is complicated by spectral overlap with NADH and UDPG. Overall, the 1 H- and 31 P-MR methods both provide exciting opportunities to study NAD+ metabolism on human brain in vivo. © 2016 International Society for Magnetic Resonance in Medicine. Magn Reson Med 78:828-835, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

31 citations


Journal ArticleDOI
TL;DR: Two novel biomarkers of early schizophrenia in a preclinical rat model are identified: hypofrontality associated with the hyperflexible phenotype, and posterior hyperactivity.

21 citations


Journal ArticleDOI
TL;DR: While providing the lowest accuracy, the detection of non-protonated carbons is the simplest to implement with the lowest RF power deposition.

11 citations


Journal ArticleDOI
TL;DR: Multi‐coil magnetic field modeling has emerged as a viable alternative to conventional field generation based on spherical harmonic shapes, and an active MC community is forming, but a lack of detailed information on existing MC designs complicates the assessment and precludes a meaningful comparison.
Abstract: Purpose Multi-coil (MC) magnetic field modeling has emerged as a viable alternative to conventional field generation based on spherical harmonic shapes, and an active MC community is forming. Although all MC applications share the same modeling concept, the specific MC designs can largely differ as a result of disparities in region of interest (eg, human versus rodent), intended MR application (eg, B0 shimming versus spatial encoding), or other experimental constraints (eg, available bore space or integration with radiofrequency technology). To date, a lack of detailed information on existing MC designs complicates the assessment and precludes a meaningful comparison. Methods Here, we suggest that future publications involving the MC technique not only report the benefits for the application at hand, but also include an explicit description of the MC wire pattern used. Results This public multi-coil information (PUMCIN) policy represents a voluntary commitment to promoting free public access to the details necessary for reproducing and benefiting from MC research. Conclusions The PUMCIN policy is expected to initiate a paradigm shift with respect to the way MC innovation is reported. By setting an example, we hope to encourage the evolving MC community to maximize the benefits for science and society by embracing it. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine.

8 citations