scispace - formally typeset
Search or ask a question

Showing papers by "Ronald E. Taam published in 2016"


Journal ArticleDOI
TL;DR: In this article, the effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds.
Abstract: The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame, due to the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N-body simulations, we localize the instantaneous equilibrium points (EPs) and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.

13 citations


Journal ArticleDOI
TL;DR: In this paper, the authors extended the work of Yen et al. and developed 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks.
Abstract: We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second order accuracy using numerical simulations. The proposed method is accurate, computationally fast and has the potential to be applied to the studies of planetary migration and the gaseous morphology of disk galaxies.

10 citations


Journal ArticleDOI
08 Aug 2016
TL;DR: Kim et al. as mentioned in this paper showed that the carbon star CIT 6 reveals evidences for a binary in a high-resolution CO line emission map of its circumstellar envelope taken with the Submillimeter Array.
Abstract: We present the essential results pointed out in a recently published paper, Kim et al. 2015, Astrophys. J., 814, 61. The carbon star CIT 6 reveals evidences for a binary in a high-resolution CO line emission map of its circumstellar envelope taken with the Submillimeter Array. The morphology of the outflow described by the spiral-shell pattern, bipolar (or possibly multipolar) outflow, one-sided interarm gaps, and double spiral feature point to a plausible scenario that CIT 6 is a binary system in an eccentric orbit with the mass losing star evolving from the AGB.

1 citations


Journal ArticleDOI
TL;DR: In this article, the authors extended the work of Yen et al. and developed 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks.
Abstract: We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second order accuracy using numerical simulations. The proposed method is accurate, computationally fast and has the potential to be applied to the studies of planetary migration and the gaseous morphology of disk galaxies.

Journal ArticleDOI
TL;DR: In this paper, the effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame because of the competition of nearby perturbations of similar strengths with differing rotation speeds.
Abstract: The effective potential neighboring the corotation resonance region in barred galaxies is shown to be strongly time-dependent in any rotating frame because of the competition of nearby perturbations of similar strengths with differing rotation speeds. Contrary to the generally adopted assumption, that in the bar rotating frame the corotation region should possess four stationary equilibrium points (Lagrange points), with high quality N-body simulations we localize the instantaneous equilibrium points and find that they circulate or oscillate broadly in azimuth with respect to the pattern speeds of the inner or outer perturbations. This implies that at the particle level the Jacobi integral is not well conserved around the corotation radius. That is, angular momentum exchanges decouple from energy exchanges, enhancing the chaotic diffusion of stars through the corotation region.