scispace - formally typeset
Search or ask a question

Showing papers by "Rork Kuick published in 2019"


Journal ArticleDOI
TL;DR: The findings indicate the R270H/R273H p53 mutant protein does not manifest definite GOF biological effects in mouse and human CRCs, suggesting possible GOF effects of mutant p53 in cancer phenotypes are likely allele-specific and/or context-dependent.

14 citations


Journal ArticleDOI
TL;DR: GSTT2 is found to protect esophageal squamous cells against DNA damage from genotoxic stress and that GSTT2 expression can be induced by C-PAC, and contributed to the low incidence of EAC in this population.

11 citations


Journal ArticleDOI
TL;DR: The future potential use of SNF* peptide in multiple tumor surveillance and tumor-targeted therapeutics was demonstrated and it was identified and validated as a specific peptide for EpCAM.
Abstract: Tumor targeting agents are being developed for early tumor detection and therapeutics. We previously identified the peptide SNFYMPL (SNF*) and demonstrated its specific binding to human esophageal specimens of high-grade dysplasia (HGD) and adenocarcinoma with imaging ex vivo. Here, we aim to identify the target for this peptide and investigate its potential applications in imaging and drug delivery. With SNF* conjugated affinity chromatography, mass spectrum, Western blot, enzyme-linked immunosorbent assay (ELISA), and molecular docking, we found that the epithelial cell adhesion molecule (EpCAM) was the potential target of SNF*. Next, we showed that FITC-labeled SNF* (SNF*-FITC) colocalized with EpCAM antibody on the surface of esophageal adenocarcinoma cells OE33, and SNF*-FITC binding patterns significantly changed after EpCAM knockdown or exogenous EpCAM transfection. With the data from TCGA, we demonstrated that EpCAM was overexpressed in 17 types of cancers. Using colon and gastric adenocarcinoma cells and tissues as examples, we found that SNF*-FITC bound in a pattern was colocalized with EpCAM antibody, and the SNF* binding did not upregulate the EpCAM downstream Wnt signals. Subsequently, we conjugated SNF* with our previously constructed poly(histidine)-PEG/DSPE copolymer micelles. SNF* labeling significantly improved the micelle binding with colon and gastric adenocarcinoma cells in vitro, and enhanced the antitumor effects and decreased the toxicities of the micelles in vivo. In conclusion, we identified and validated SNF* as a specific peptide for EpCAM. The future potential use of SNF* peptide in multiple tumor surveillance and tumor-targeted therapeutics was demonstrated.

11 citations


Journal ArticleDOI
TL;DR: A peptide specific for cMet is demonstrated that is promising for endoscopic detection of pre-malignant lesions and guiding of tissue biopsy and shows significantly greater binding to tubular and sessile serrated adenomas versus hyperplastic polyps and normal mucosa.
Abstract: White light colonoscopy is widely used to detect colorectal polyps, but flat and depressed lesions are often missed. Here, we report a molecular imaging strategy to potentially improve diagnostic performance by developing a fluorescently-labeled peptide specific for cMet. This 7mer is conjugated to Cy5.5, a near-infrared (NIR) cyanine dye. Specific binding to cMet was confirmed by cell staining, knockdown, and competition assays. The probe showed high binding affinity (kd = 57 nM) and fast onset (k = 1.6 min) to support topical administration in vivo. A mouse model (CPC;Apc) that develops spontaneous adenomas that overexpress cMet was used to demonstrate feasibility for real time in vivo imaging. This targeting ligand showed significantly higher target-to-background (T/B) ratio for polypoid and non-polypoid lesions by comparison with a scrambled control peptide. Immunofluorescence staining on human colon specimens show significantly greater binding to tubular and sessile serrated adenomas versus hyperplastic polyps and normal mucosa. These results demonstrate a peptide specific for cMet that is promising for endoscopic detection of pre-malignant lesions and guiding of tissue biopsy.

7 citations


Journal ArticleDOI
TL;DR: The findings imply that ovarian endosalpingiosis in the mouse does not likely arise as a consequence of detachment and implantation of tubal epithelium and other mechanisms may be relevant.
Abstract: Most high-grade serous carcinomas are thought to arise from Fallopian tube epithelium (FTE), but some likely arise outside of the tube, perhaps from ectopic tubal-type epithelium known as endosalpingiosis. Importantly, the origin of endosalpingiosis is poorly understood. The proximity of the tubal fimbriae to the ovaries has led to the proposal that disruptions in the ovarian surface that occur during ovulation may allow detached FTE to implant in the ovary and form tubal-type glands and cysts. An alternative model suggests that cells present in ectopic locations outside the Mullerian tract retain the capacity for multi-lineage differentiation and can form glands with tubal-type epithelium. We used double transgenic Ovgp1-iCreERT2 ;R26RLSL-eYFP mice, which express an eYFP reporter protein in OVGP1-positive tissues following transient tamoxifen (TAM) treatment, to track the fate of oviductal epithelial cells. Cohorts of adult mice were given TAM to activate eYFP expression in oviductal epithelium, and ovaries were examined at time points ranging from 2 days to 12 months post-TAM. To test whether superovulation might increase acquisition of endosalpingiosis, additional cohorts of TAM-treated mice underwent up to five cycles of superovulation and ovaries were examined at 1, 6, and 12 months post-TAM. Ovaries were sectioned in their entirety to identify endosalpingiosis. Immunohistochemical staining for PAX8, tubulin, OVGP1, and eYFP was employed to study endosalpingiosis lesions. Ovarian endosalpingiosis was identified in 14.2% of TAM-treated adult mice. The endosalpingiotic inclusion glands and cysts were lined by secretory and ciliated cells and expressed PAX8, tubulin, OVGP1, and eYFP. Neither age nor superovulation was associated with a significant increase in endosalpingiosis. Endosalpingiosis was also occasionally present in the ovaries of pre-pubertal mice. The findings imply that ovarian endosalpingiosis in the mouse does not likely arise as a consequence of detachment and implantation of tubal epithelium and other mechanisms may be relevant. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

4 citations