scispace - formally typeset
Search or ask a question

Showing papers by "Rosalinde Masereeuw published in 2006"


Journal ArticleDOI
TL;DR: In conclusion, siRNA accumulates spontaneously in the kidney after i.v. injection, where it selectively suppresses gene function in the proximal tubules, and provides a novel experimental and potential therapeutic tool for gene silencing in the kidneys.
Abstract: Different gene-silencing methods, like antisense and short interfering RNA (siRNA), are widely used as experimental tools to inhibit gene expression. In the present study, the in vivo behavior of siRNA in rats and siRNA-mediated silencing of genes in the renal proximal tubule were investigated. To study the biodistribution of siRNA, rats were injected i.v. with radiolabeled siRNA or radiolabel alone (control), and scintigraphic images were acquired at different time intervals postinjection. The siRNA preferentially accumulated in the kidneys and was excreted in the urine. One hour after injection, the amount of siRNA present in both kidneys (1.7 +/- 0.3% of injected dose/g tissue) was on average 40 times higher than in other tissues (liver, brain, intestine, muscle, lung, spleen, and blood). Besides the biodistribution, the effect of siRNA on multidrug resistance protein isoform 2 (Mrp2/Abcc2, siRNAMrp2) in renal proximal tubules was investigated. Mrp2 function was assessed by measuring the excretion of its fluorescent substrate calcein in the isolated perfused rat kidney. Four days after administration, siRNAMrp2 reduced the urinary calcein excretion rate significantly (35% inhibition over the period 80-150 min of perfusion). This down-regulation was specific because another siRNA sequence directed against a different transporter in the proximal tubule, Mrp4 (Abcc4, siRNAMrp4), did not alter the Mrp2-mediated excretion of calcein. In conclusion, siRNA accumulates spontaneously in the kidney after i.v. injection, where it selectively suppresses gene function in the proximal tubules. Therefore, i.v. administered siRNA provides a novel experimental and potential therapeutic tool for gene silencing in the kidney.

218 citations


Journal Article
TL;DR: Gelofusine is a well-known and generally used blood volume substitute that can be applied safely without the induction of toxicity, and evaluation of this compound for its potential to reduce the kidney uptake of radiolabeled peptides in patients is warranted.
Abstract: 111In-Diethylenetriaminepentaacetic acid-octreotide generally is used for the scintigraphic imaging of neuroendocrine and other somatostatin receptor–positive tumors. On the basis of the successful targeting of octreotide, radiolabeled somatostatin analogs, such as 90Y-(1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid [DOTA])0-Tyr3-octreotide and 177Lu-DOTA0-Tyr3-octreotate, were developed for peptide receptor radionuclide therapy. However, the maximum tolerated doses of these analogs are limited because of the high and persistent renal uptake that leads to relatively high radiation doses in the kidneys. Renal uptake can be reduced by coinfusion of basic amino acids or polypeptides. However, high doses of basic amino acids can induce severe side effects. It was reported that the infusion of gelatin-based plasma expanders resulted in increased low-molecular-weight proteinuria, suggesting that these plasma expanders interfere with the tubular reabsorption of peptides and proteins. In the present study, we analyzed the effects of several plasma expanders on the renal uptake of 111In-octreotide in rats and mice. Methods: Wistar rats and BALB/c mice were injected with 0.5 or 0.1 mL of plasma expander, respectively. Thereafter, the animals received 111In-octreotide intravenously. Animals were killed at 20 h after the injection of the radiopharmaceutical. Organs were dissected, and the amount of radioactivity in the organs and tissues was measured. Results: The administration of 20 mg of Gelofusine in rats or 4 mg in mice was as effective in reducing the renal uptake of 111In-octreotide as the administration of 80 or 20 mg of lysine in rats or mice, respectively, without reducing 111In-octreotide uptake in receptor-positive organs. Plasma expanders based on starch or dextran had no effect on the renal uptake of 111In-octreotide. Conclusion: The gelatin-based plasma expander Gelofusine significantly reduced the kidney uptake of 111In-octreotide as effectively as did lysine. Because Gelofusine is a well-known and generally used blood volume substitute that can be applied safely without the induction of toxicity, evaluation of this compound for its potential to reduce the kidney uptake of radiolabeled peptides in patients is warranted.

113 citations


Journal Article
TL;DR: It is observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides.
Abstract: Peptide receptor–mediated radiotherapy of neuroendocrine and other somatostatin receptor–positive tumors with radiolabeled somatostatin analogs has been applied in several experimental settings. The kidneys are the organs responsible for dose-limiting toxicity attributable to the retention of radiolabeled octreotide in the renal cortex, leading to a relatively high radiation dose that may result in irreversible loss of kidney function. The administration of basic amino acids reduces renal uptake but does have significant side effects. We observed that gelatin-based plasma expanders induced tubular low-molecular-weight proteinuria in healthy volunteers, suggesting that components in these solutions can interfere with the tubular reabsorption of proteins and peptides. Here, we studied the effects of infusion of low doses of the plasma expander succinylated gelatin (GELO) on the renal uptake of 111In-labeled octreotide (111In-OCT). Methods: Five healthy volunteers were given 111In-OCT, first in combination with normal saline and 2 wk later in combination with GELO. Scintigraphic images of the kidneys as well as blood and urine samples were analyzed. To exclude a nonspecific hemodynamic effect of the plasma expander, the procedure was repeated with 5 other volunteers who received the carbohydrate-based plasma expander hydroxyethyl starch (HES). Results: Low doses of GELO were able to effectively reduce the kidney retention of 111In-OCT. The renal radiation dose was significantly reduced by 45% ± 10% (mean ± SD) (P = 0.006), whereas HES showed no significant effect (0% ± 12%). The infusion of GELO did not cause any side effects. Conclusion: GELO effectively reduces the renal uptake of 111In-OCT. In contrast to currently used mixtures of amino acids, GELO does not cause any side effects.

98 citations


Journal ArticleDOI
TL;DR: Investigation of renal inducible nitric oxide synthase (iNOS) in human endotoxemia and sepsis and the effect of NO on tubular integrity indicated that upregulation of iNOS and subsequent NO production may be responsible for renal proximal tubule damage observed.
Abstract: The incidence and the mortality of septic acute kidney injury are high, partly because the pathogenesis of sepsis-induced renal dysfunction is not clear. The objective of this study was to investigate the upregulation of renal inducible nitric oxide synthase (iNOS) in human endotoxemia and sepsis and the effect of NO on tubular integrity. Septic patients and endotoxemia that was induced by a bolus injection of 2 ng/kg Escherichia coli LPS in human volunteers were studied. In addition, the effect of co-administration of the selective iNOS inhibitor aminoguanidine was evaluated. The urinary excretion of the cytosolic glutathione-S-transferase-A1 (GSTA1-1) and GSTP1-1, markers for proximal and distal tubule damage, respectively, was determined. In septic patients, an almost 40-fold induction of iNOS mRNA in cells that were isolated from urine was found accompanied by a significant increase in NO metabolites in blood. The mRNA expression of iNOS was induced 34-fold after endotoxin administration. LPS-treated healthy volunteers showed a higher urinary excretion of NO metabolites compared with control subjects. Urinary NO metabolite excretion correlated with urinary GSTA1-1 excretion, indicating proximal tubule damage, whereas no distal tubular damage was observed. Co-administration of aminoguanidine reduced the upregulation of iNOS mRNA, urinary NO metabolite, and GSTA1-1 excretion, indicating that upregulation of iNOS and subsequent NO production may be responsible for renal proximal tubule damage observed.

92 citations


Journal ArticleDOI
TL;DR: After inducing ischemic reperfusion injury in the kidney, ABC transporters appear to be differentially regulated, which might be associated with the renal regeneration process.

69 citations


Journal ArticleDOI
TL;DR: It is concluded that an increased shuttling of the transporter to the apical membrane takes place in response to gentamicin exposure, which is triggered by endothelin.
Abstract: Multidrug resistance protein (MRP) 2 (MRP2; ABCC2), an organic anion transporter apically expressed in liver, kidney, and intestine, plays an important protective role through facilitating the efflux of potentially toxic compounds. We hypothesized that upon a toxic insult, MRP2 is up-regulated in mammalian kidney, thereby protecting the tissue from damage. We studied the effects of the nephrotoxicant gentamicin on the functional expression of MRP2 in transfected Madin-Darby canine kidney type II (MDCKII) cells and rat kidney. Transport of glutathionemethyl fluorescein by cells or calcein by isolated perfused rat kidney was measured to monitor MRP2 activity. MDCKII cells were exposed to gentamicin (0-1000 μM) for either 1 h, 24 h, or for 1 h followed by 24-h recovery. No effect was observed on MRP2 after 1-h exposure. After 24-h gentamicin exposure or after a 24-h recovery period following 1-h exposure, an increase in MRP2-mediated transport was seen. This up-regulation was accompanied by a 2-fold increase in MRP2 protein expression in the apical membrane, whereas the expression in total cell lysates remained unchanged. In perfused kidneys of rats exposed to gentamicin (100 mg/kg) for seven consecutive days, an increase in Mrp2 function and expression was found, which was prevented by addition of a dual endothelin-receptor antagonist, bosentan. We conclude that an increased shuttling of the transporter to the apical membrane takes place in response to gentamicin exposure, which is triggered by endothelin. Up-regulation of MRP2 in the kidney may be interpreted as part of a protective mechanism.

20 citations


Journal Article
TL;DR: In this paper, the authors showed that infusion of the succinylated gelatin plasma expander Gelofusine (B. Braun Medical) might be useful for protection of the kidneys during peptide receptor radionuclide therapy.
Abstract: REPLY: We appreciate the interest of Rolleman et al. in our 2 papers ( [1][1],[2][2] ) in which we showed that infusion of the succinylated gelatin plasma expander Gelofusine (B. Braun Medical) might be useful for protection of the kidneys during peptide receptor radionuclide therapy. We fully

12 citations


Journal ArticleDOI
TL;DR: These rat intestinal and renal cell lines appear to be suitable for further characterisation of ET-1 function and its role in pathophysiological processes in epithelial cells.

9 citations