scispace - formally typeset
S

Shafi Goldwasser

Researcher at Massachusetts Institute of Technology

Publications -  220
Citations -  40908

Shafi Goldwasser is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Cryptography & Encryption. The author has an hindex of 78, co-authored 211 publications receiving 38236 citations. Previous affiliations of Shafi Goldwasser include Weizmann Institute of Science & University of Georgia.

Papers
More filters
Journal ArticleDOI

A digital signature scheme secure against adaptive chosen-message attacks

TL;DR: A digital signature scheme based on the computational difficulty of integer factorization possesses the novel property of being robust against an adaptive chosen-message attack: an adversary who receives signatures for messages of his choice cannot later forge the signature of even a single additional message.
Journal ArticleDOI

The knowledge complexity of interactive proof systems

TL;DR: A computational complexity theory of the “knowledge” contained in a proof is developed and examples of zero-knowledge proof systems are given for the languages of quadratic residuosity and 'quadratic nonresiduosity.
Proceedings Article

Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract)

TL;DR: The above bounds on t, where t is the number of players in actors, are tight!
Proceedings ArticleDOI

Completeness theorems for non-cryptographic fault-tolerant distributed computation

TL;DR: In this article, the authors show that every function of n inputs can be efficiently computed by a complete network of n processors in such a way that if no faults occur, no set of size t can be found.
Journal ArticleDOI

How to construct random functions

TL;DR: In this paper, a constructive theory of randomness for functions, based on computational complexity, is developed, and a pseudorandom function generator is presented, which is a deterministic polynomial-time algorithm that transforms pairs (g, r), where g is any one-way function and r is a random k-bit string, to computable functions.