scispace - formally typeset
Search or ask a question

Showing papers by "Sigfus J Johnsen published in 2011"


Journal ArticleDOI
TL;DR: In this article, the authors reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilizes argon and nitrogen isotopic ratios from occluded air bubbles.
Abstract: [1] Greenland recently incurred record high temperatures and ice loss by melting, adding to concerns that anthropogenic warming is impacting the Greenland ice sheet and in turn accelerating global sea-level rise. Yet, it remains imprecisely known for Greenland how much warming is caused by increasing atmospheric greenhouse gases versus natural variability. To address this need, we reconstruct Greenland surface snow temperature variability over the past 4000 years at the GISP2 site (near the Summit of the Greenland ice sheet; hereafter referred to as Greenland temperature) with a new method that utilises argon and nitrogen isotopic ratios from occluded air bubbles. The estimated average Greenland snow temperature over the past 4000 years was −30.7°C with a standard deviation of 1.0°C and exhibited a long-term decrease of roughly 1.5°C, which is consistent with earlier studies. The current decadal average surface temperature (2001–2010) at the GISP2 site is −29.9°C. The record indicates that warmer temperatures were the norm in the earlier part of the past 4000 years, including century-long intervals nearly 1°C warmer than the present decade (2001–2010). Therefore, we conclude that the current decadal mean temperature in Greenland has not exceeded the envelope of natural variability over the past 4000 years, a period that seems to include part of the Holocene Thermal Maximum. Notwithstanding this conclusion, climate models project that if anthropogenic greenhouse gas emissions continue, the Greenland temperature would exceed the natural variability of the past 4000 years sometime before the year 2100.

129 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed deuterium measurements conducted on the EPICA Dome C ice core, Antarctica, with a ~50 year temporal resolution was used to describe the Antarctic temperature variability during the long interglacial period occurring ~400 thousand years before the present (Marine Isotopic Stage, MIS 11).
Abstract: . We expand here the description of the Antarctic temperature variability during the long interglacial period occurring ~400 thousand years before the present (Marine Isotopic Stage, MIS 11). Our study is based on new detailed deuterium measurements conducted on the EPICA Dome C ice core, Antarctica, with a ~50 year temporal resolution. Despite an ice diffusion of a length reaching ~8 cm at MIS 11 depth, the data allow us to highlight a variability at multi-centennial scale for MIS 11, as it has already been observed for the Holocene period (MIS 1). The differences between MIS 1 and MIS 11 are analysed regarding the links between multi-millennial trends and sub-millennial variability. The EPICA Dome C deuterium record shows an increased variability and the onset of millennial to sub-millennial periodicities at the beginning of the final cooling phase of MIS 11. Our findings are robust with respect to sensitivity tests on the somewhat uncertain MIS 11 duration.

34 citations