scispace - formally typeset
Search or ask a question

Showing papers by "Stefan Metzger published in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors propose a research agenda to address the realizable benefits and unintended consequences of nature-based climate solutions (NbCS) using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling.
Abstract: Nature‐based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem‐scale carbon fluxes, for example, by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state‐of‐the‐art remote sensing products and land‐surface models are not yet being widely used to inform NbCS policymaking or implementation. As a result, there is a critical mismatch between the point‐ and tree‐scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policymaking. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem‐scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre‐existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.

15 citations


Journal ArticleDOI
TL;DR: In this paper , a variance-partitioning analysis identifies vegetation type as an important predictor for high-latitude surface energy budget (SEB) components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics.
Abstract: Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.

5 citations


DOI
TL;DR: In this article , the first airborne measurements of CH4 sampled over three wetland areas in Zambia were used to derive emission fluxes, and three independent approaches to flux quantification from airborne measurements were used: Airborne mass balance, airborne eddy-covariance, and an atmospheric inversion.
Abstract: Methane (CH4) is a potent greenhouse gas with a warming potential 84 times that of carbon dioxide (CO2) over a 20‐year period. Atmospheric CH4 concentrations have been rising since the nineteenth century but the cause of large increases post‐2007 is disputed. Tropical wetlands are thought to account for ∼20% of global CH4 emissions, but African tropical wetlands are understudied and their contribution is uncertain. In this work, we use the first airborne measurements of CH4 sampled over three wetland areas in Zambia to derive emission fluxes. Three independent approaches to flux quantification from airborne measurements were used: Airborne mass balance, airborne eddy‐covariance, and an atmospheric inversion. Measured emissions (ranging from 5 to 28 mg m−2 hr−1) were found to be an order of magnitude greater than those simulated by land surface models (ranging from 0.6 to 3.9 mg m−2 hr−1), suggesting much greater emissions from tropical wetlands than currently accounted for. The prevalence of such underestimated CH4 sources may necessitate additional reductions in anthropogenic greenhouse gas emissions to keep global warming below a threshold of 2°C above preindustrial levels.

5 citations


Journal ArticleDOI
TL;DR: In this paper , emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK during March-June 2017 emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017.
Abstract: Abstract. During March–June 2017 emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK. Through the use of a footprint model the expected emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017 and compared with the measured emissions. These simulated emissions were shown to underestimate measured emissions during the daytime by a factor of 1.48, but they agreed well overnight. Furthermore, underestimations were spatially mapped, and the areas around the measurement site responsible for differences in measured and simulated emissions were inferred. It was observed that areas of higher traffic, such as major roads near national rail stations, showed the greatest underestimation by the simulated emissions. These discrepancies are partially attributed to a combination of the inventory not fully capturing traffic conditions in central London and both the spatial and temporal resolution of the inventory not fully describing the high heterogeneity of the urban centre. Understanding of this underestimation may be further improved with longer measurement time series to better understand temporal variation and improved temporal scaling factors to better simulate sub-annual emissions.

3 citations


DOI
29 Sep 2022
TL;DR: In this article , the authors introduce an open special collection on Advances in Scaling and Modeling of Land-Atmosphere Interactions that features articles in JGR: Biogeosciences, JGR : Atmospheres, Journal of Advances of Earth Systems, and Earth & Space Science, which are then used to advance theories of scale interaction to improve predictive models.
Abstract: The highly interactive and variable nature of scales of space and time featured in components of the Earth system imparts enormous complexity to land‐atmosphere interactions. Here, we introduce an open special collection on Advances in Scaling and Modeling of Land‐Atmosphere Interactions that features articles in JGR: Biogeosciences, JGR: Atmospheres, Journal of Advances in the Modeling of Earth Systems, and Earth & Space Science. Collectively, these articles identify interactions across multiple processes, in field experiments, long‐term observations, and numerical simulations, which are then used to advance theories of scale interaction to improve predictive models.

2 citations


Journal ArticleDOI
TL;DR: In this paper , an unconditionally stable, linear, fully discrete element scheme based on the scalar auxiliary variable approach was proposed to describe phase separation processes in mixtures of two materials.
Abstract: . The Cahn–Hilliard equation is one of the most common models to describe phase separation processes in mixtures of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for this equation have been proposed. Recently, a family of models using Cahn–Hilliard-type equations on the boundary of the domain to describe adsorption processes was analysed (cf. Knopf, Lam, Liu, Metzger, ESAIM: Math. Model. Nu-mer. Anal., 2021). This family of models includes the case of instantaneous adsorption processes studied by Goldstein, Miranville, and Schimperna (Physica D, 2011) as well as the case of vanishing adsorption rates which was investigated by Liu and Wu (Arch. Ration. Mech. Anal., 2019). In this paper, we are interested in the numerical treatment of these models and propose an unconditionally stable, linear, fully discrete finite element scheme based on the scalar auxiliary variable approach. Furthermore, we establish the convergence of discrete solutions towards suitable weak solutions of the original model. Thereby, when passing to the limit, we are able to remove the auxiliary variables introduced in the discrete setting completely. Finally, we present simulations based on the proposed linear scheme and compare them to results obtained using a stable, non-linear scheme to underline the practicality of our scheme.

1 citations


DOI
22 Nov 2022
TL;DR: In this paper , wavelet analysis was applied to airborne eddy covariance measurements over a heterogeneous mid-latitude forested landscape, interspersed with open water bodies and wetlands.
Abstract: The Earth's surface is heterogeneous at multiple scales owing to spatial variability in various properties. The atmospheric responses to these heterogeneities through fluxes of energy, water, carbon, and other scalars are scale‐dependent and nonlinear. Although these exchanges can be measured using the eddy covariance technique, widely used tower‐based measurement approaches suffer from spectral losses in lower frequencies when using typical averaging times. However, spatially resolved measurements such as airborne eddy covariance measurements can detect such larger scale (meso‐β, meso‐γ) transport. To evaluate the prevalence and magnitude of these flux contributions, we applied wavelet analysis to airborne flux measurements over a heterogeneous mid‐latitude forested landscape, interspersed with open water bodies and wetlands. The measurements were made during the Chequamegon Heterogeneous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors intensive field campaign. We ask, how do spatial scales of surface‐atmosphere fluxes vary over heterogeneous surfaces across the day and across seasons? Measured fluxes were separated into smaller‐scale turbulent and larger‐scale mesoscale contributions. We found significant mesoscale contributions to sensible and latent heat fluxes through summer to autumn which would not be resolved in single‐point tower measurements through traditional time‐domain half‐hourly Reynolds decomposition. We report scale‐resolved flux transitions associated with seasonal and diurnal changes of the heterogeneous study domain. This study adds to our understanding of surface‐atmospheric interactions over unstructured heterogeneities and can help inform multi‐scale model‐data integration of weather and climate models at a sub‐grid scale.

1 citations


DOI
01 Sep 2022
TL;DR: In this paper, the maximum quantum yield (MQY) is used to calculate gross and net primary productivity in Remote Sensing (RS) applications to quantify agricultural GHG mitigation potential.
Abstract: Livestock agriculture accounts for ∼15% of global anthropogenic greenhouse gas (GHG) emissions. Recently, natural climate solutions (NCS) have been identified to mitigate farm‐scale GHG emissions. Nevertheless, their impacts are difficult to quantify due to farm spatial heterogeneity and effort required to measure changes in carbon stocks. Remote sensing (RS) models are difficult to parameterize for heterogeneous agricultural landscapes. Eddy covariance (EC) in combination with novel techniques that quantitatively match source area variations could help update such vegetation‐specific parameters while accounting for pronounced heterogeneity. We evaluate a plant physiological parameter, the maximum quantum yield (MQY), which is commonly used to calculate gross and net primary productivity in RS applications. RS models often rely on spatially invariable MQY, which leads to inconsistencies between RS and EC models. We evaluate if EC data improve RS models by updating crop specific MQYs to quantify agricultural GHG mitigation potentials. We assessed how farm harvest compared to annual sums of (a) RS without improvements, (b) EC results, and (c) EC‐RS models. We then estimated emissions to calculate the annual GHG balance, including mitigation through plant carbon uptake. Our results indicate that EC‐RS models significantly improved the prediction of crop yields. The EC model captures diurnal variations in carbon dynamics in contrast to RS models based on input limitations. A net zero GHG balance indicated that perennial vegetation mitigated over 60% of emissions while comprising 40% of the landscape. We conclude that the combination of RS and EC can improve the quantification of NCS in agroecosystems.

Posted ContentDOI
23 Mar 2022
TL;DR: In this paper , an unconditionally stable, linear, fully discrete finite element scheme based on the scalar auxiliary variable approach was proposed to describe phase separation processes in mixtures of two materials.
Abstract: The Cahn-Hilliard equation is one of the most common models to describe phase separation processes in mixtures of two materials. For a better description of short-range interactions between the material and the boundary, various dynamic boundary conditions for this equation have been proposed. Recently, a family of models using Cahn-Hilliard-type equations on the boundary of the domain to describe adsorption processes was analysed (cf. Knopf, Lam, Liu, Metzger, ESAIM: Math. Model. Numer. Anal., 2021). This family of models includes the case of instantaneous adsorption processes studied by Goldstein, Miranville, and Schimperna (Physica D, 2011) as well as the case of vanishing adsorption rates which was investigated by Liu and Wu (Arch. Ration. Mech. Anal., 2019). In this paper, we are interested in the numerical treatment of these models and propose an unconditionally stable, linear, fully discrete finite element scheme based on the scalar auxiliary variable approach. Furthermore, we establish the convergence of discrete solutions towards suitable weak solutions of the original model. Thereby, when passing to the limit, we are able to remove the auxiliary variables introduced in the discrete setting completely. Finally, we present simulations based on the proposed linear scheme and compare them to results obtained using a stable, non-linear scheme to underline the practicality of our scheme.