scispace - formally typeset
Search or ask a question

Showing papers by "Stephen J. Maybank published in 2011"


Journal ArticleDOI
01 Nov 2011
TL;DR: Methods for video structure analysis, including shot boundary detection, key frame extraction and scene segmentation, extraction of features including static key frame features, object features and motion features, video data mining, video annotation, and video retrieval including query interfaces are analyzed.
Abstract: Video indexing and retrieval have a wide spectrum of promising applications, motivating the interest of researchers worldwide. This paper offers a tutorial and an overview of the landscape of general strategies in visual content-based video indexing and retrieval, focusing on methods for video structure analysis, including shot boundary detection, key frame extraction and scene segmentation, extraction of features including static key frame features, object features and motion features, video data mining, video annotation, video retrieval including query interfaces, similarity measure and relevance feedback, and video browsing. Finally, we analyze future research directions.

606 citations


Journal ArticleDOI
TL;DR: Experimental evaluations against state-of-the-art algorithms demonstrate the promise and effectiveness of the proposed incremental tensor subspace learning algorithm, and its applications to foreground segmentation and object tracking.
Abstract: Appearance modeling is very important for background modeling and object tracking. Subspace learning-based algorithms have been used to model the appearances of objects or scenes. Current vector subspace-based algorithms cannot effectively represent spatial correlations between pixel values. Current tensor subspace-based algorithms construct an offline representation of image ensembles, and current online tensor subspace learning algorithms cannot be applied to background modeling and object tracking. In this paper, we propose an online tensor subspace learning algorithm which models appearance changes by incrementally learning a tensor subspace representation through adaptively updating the sample mean and an eigenbasis for each unfolding matrix of the tensor. The proposed incremental tensor subspace learning algorithm is applied to foreground segmentation and object tracking for grayscale and color image sequences. The new background models capture the intrinsic spatiotemporal characteristics of scenes. The new tracking algorithm captures the appearance characteristics of an object during tracking and uses a particle filter to estimate the optimal object state. Experimental evaluations against state-of-the-art algorithms demonstrate the promise and effectiveness of the proposed incremental tensor subspace learning algorithm, and its applications to foreground segmentation and object tracking.

146 citations


Proceedings ArticleDOI
28 Nov 2011
TL;DR: A manifold regularized MTL (MRMTL) algorithm is proposed to discover the latent shared subspace by treating the high-dimensional image space as a sub-manifold embedded in an ambient space and suggests that MRMTL can properly extract the common features for image representation and thus improve the generalization performance of the image classification models.
Abstract: Multi-task learning (MTL) plays an important role in image analysis applications, e.g. image classification, face recognition and image annotation. That is because MTL can estimate the latent shared subspace to represent the common features given a set of images from different tasks. However, the geometry of the data probability distribution is always supported on an intrinsic image sub-manifold that is embedded in a high dimensional Euclidean space. Therefore, it is improper to directly apply MTL to multiclass image classification. In this paper, we propose a manifold regularized MTL (MRMTL) algorithm to discover the latent shared subspace by treating the high-dimensional image space as a sub-manifold embedded in an ambient space. We conduct experiments on the PASCAL VOC'07 dataset with 20 classes and the MIR dataset with 38 classes by comparing MRMTL with conventional MTL and several representative image classification algorithms. The results suggest that MRMTL can properly extract the common features for image representation and thus improve the generalization performance of the image classification models.

4 citations