scispace - formally typeset
Search or ask a question

Showing papers by "Stephen W. Fesik published in 2006"


Journal ArticleDOI
TL;DR: From NMR-based structural studies and parallel synthesis, a potent ligand was obtained, which binds to Bcl-x(L) with an inhibition constant (K(i)) of 36 +/- 2 nM, which represents the binding site for BH3 peptides from proapoptotic B cl-2 family members such as Bak and Bad.
Abstract: The antiapoptotic proteins Bcl-xL and Bcl-2 play key roles in the maintenance of normal cellular homeostasis. However, their overexpression can lead to oncogenic transformation and is responsible f...

271 citations


Journal ArticleDOI
TL;DR: A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (pac litaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines and potentiates the activity of paclitaxel in vivo.
Abstract: Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)'s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.

147 citations


Journal ArticleDOI
TL;DR: Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, 73R, potentiates the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of pac litaxel in a mouse xenograft model.
Abstract: Development of a rationally designed potentiator of cancer chemotherapy, via inhibition of Bcl-X(L) function, is described. Lead compounds generated by NMR screening and directed parallel synthesis displayed sub-microM binding but were strongly deactivated in the presence of serum. The dominant component of serum deactivation was identified as domain III of human serum albumin (HSA); NMR solution structures of inhibitors bound to both Bcl-X(L) and HSA domain III indicated two potential optimization sites for separation of affinities. Modifications at both sites resulted in compounds with improved Bcl-X(L) binding and greatly increased activity in the presence of human serum, culminating in 73R, which bound to Bcl-X(L) with a K(i) of 0.8 nM. In a cellular assay 73R reversed the protection afforded by Bcl-X(L) overexpression against cytokine deprivation in FL5.12 cells with an EC(50) of 0.47 microM. 73R showed little effect on the viability of the human non small cell lung cancer cell line A549. However, consistent with the proposed mechanism, 73R potentiated the activity of paclitaxel and UV irradiation in vitro and potentiated the antitumor efficacy of paclitaxel in a mouse xenograft model.

126 citations


Journal ArticleDOI
TL;DR: The results show that the DNA alkylating agent temozolomide exhibits robust antitumor efficacy when used in combination with HIF-1 inhibition in D54MG-derived tumors, suggesting that the combination of temozoomide with Hif-1 inhibitors might be an effective regimen for cancer therapy.
Abstract: Purpose: Inhibiting hypoxia-inducible factor-1 (HIF-1) represents a unique mechanism for cancer therapy. It is conceived that HIF-1 inhibitors may synergize with many classes of cancer therapeutic agents, such as angiogenesis inhibitors and cytotoxic drugs, to achieve a more robust tumor response. However, these hypotheses have not been rigorously tested in tumor models in vivo . The present study was carried out to evaluate the antitumor efficacy of combining HIF-1 inhibition with angiogenesis inhibitors or cytotoxic agents. Experimental Design: Using a D54MG-derived tumor model that allows knockdown of HIF-1α on doxycycline treatment, we examined the tumor responses to chemotherapeutic agents, including the angiogenesis inhibitor ABT-869 and cytotoxic agents 1,3-bis(2-chloroethyl)-1-nitrosourea and temozolomide, in the presence or absence of an intact HIF-1 pathway. Results: Surprisingly, inhibiting HIF-1 in tumors treated with the angiogenesis inhibitor ABT-869 did not produce much added benefit compared with ABT-869 treatment alone, suggesting that the combination of an angiogenesis inhibitor with a HIF-1 inhibitor may not be a robust therapeutic regimen. In contrast, the cytotoxic drug temozolomide, when used in combination with HIF-1α knockdown, exhibited a superadditive and likely synergistic therapeutic effect compared with the monotherapy of either treatment alone in the D54MG glioma model. Conclusions: Our results show that the DNA alkylating agent temozolomide exhibits robust antitumor efficacy when used in combination with HIF-1 inhibition in D54MG-derived tumors, suggesting that the combination of temozolomide with HIF-1 inhibitors might be an effective regimen for cancer therapy. In addition, our results also show that the RNA interference–based inducible knockdown model can be a valuable platform for further evaluation of the combination treatment of other cancer therapeutics with HIF-1 inhibition.

52 citations


Journal ArticleDOI
02 Mar 2006-Oncogene
TL;DR: This work screened a library of kinase-directed small interfering RNAs for enhanced cancer cell killing in the presence of Akt inhibitor A-443654 and found siRNAs targeting casein kinase I gamma 3 or the inositol polyphosphate multikinase (IPMK) significantly enhanced A- 443654-mediated cell killing, and caused decreases in Akt Ser-473 and ribosomal protein S6 phosphorylation.
Abstract: Tumors comprise genetically heterogeneous cell populations, whose growth and survival depend on multiple signaling pathways. This has spurred the development of multitargeted therapies, including small molecules that can inhibit multiple kinases. A major challenge in designing such molecules is to determine which kinases to inhibit in each cancer to maximize efficacy and therapeutic index. We describe an approach to this problem implementing RNA interference technology. In order to identify Akt-cooperating kinases, we screened a library of kinase-directed small interfering RNAs (siRNAs) for enhanced cancer cell killing in the presence of Akt inhibitor A-443654. siRNAs targeting casein kinase I gamma 3 (CSNK1G3) or the inositol polyphosphate multikinase (IPMK) significantly enhanced A-443654-mediated cell killing, and caused decreases in Akt Ser-473 and ribosomal protein S6 phosphorylation. Small molecules targeting CSNK1G3 and/or IPMK in addition to Akt may thus exhibit increased efficacy and have the potential for improved therapeutic index.

49 citations


Journal ArticleDOI
16 Nov 2006-Blood
TL;DR: The results showed a rapid, dose-dependent reduction in circulating platelet counts with a platelet nadir (>80% reduction relative to baseline) occurring approximately 6 hours after a single 100 mg/kg oral dose of ABT-263.

4 citations


Journal ArticleDOI
16 Nov 2006-Blood
TL;DR: ABT-263 has significant in vivo anti-tumor efficacy in established flank tumor models both as monotherapy and in combination with cytotoxic agents in combination therapy.

3 citations