scispace - formally typeset
Search or ask a question

Showing papers by "Sushmita Paul published in 2017"


Journal ArticleDOI
TL;DR: In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun.
Abstract: Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels.

55 citations


Journal ArticleDOI
TL;DR: A new gene selection algorithm is presented, termed as RelSim, to identify disease genes, that integrates judiciously the information of gene expression profiles and protein-protein interaction networks to compute the functional similarity among genes.

26 citations


Journal ArticleDOI
TL;DR: This study presents an application of the RH-SAC algorithm on miRNA and mRNA expression data for identification of potential miRNA-mRNA modules and identified novel miRNA/mRNA interactions in colorectal cancer.
Abstract: Differences in the expression profiles of miRNAs and mRNAs have been reported in colorectal cancer. Nevertheless, information on important miRNA-mRNA regulatory modules in colorectal cancer is still lacking. In this regard, this study presents an application of the RH-SAC algorithm on miRNA and mRNA expression data for identification of potential miRNA-mRNA modules. First, a set of miRNA rules was generated using the RH-SAC algorithm. The mRNA targets of the selected miRNAs were identified using the miRTarBase database. Next, the expression values of target mRNAs were used to generate mRNA rules using the RH-SAC. Then all miRNA-mRNA rules have been integrated for generating networks. The RH-SAC algorithm unlike other existing methods selects a group of co-expressed miRNAs and mRNAs that are also differentially expressed. In total 17 miRNAs and 141 mRNAs were selected. The enrichment analysis of selected mRNAs revealed that our method selected mRNAs that are significantly associated with colorectal cancer. We identified novel miRNA/mRNA interactions in colorectal cancer. Through experiment, we could confirm that one of our discovered miRNAs, hsa-miR-93-5p, was significantly up-regulated in 75.8% CRC in comparison to their corresponding non-tumor samples. It could have the potential to examine colorectal cancer subtype specific unique miRNA/mRNA interactions.

9 citations


Book ChapterDOI
03 Jul 2017
TL;DR: In this work, it has been shown that incorporation of integrated dissimilarity measure increases the functional similarity of cluster of genes as compared to the methods that are based on either type of dissimilarities measure.
Abstract: Clustering functionally similar genes helps in understanding the mechanism of a biological pathway. It also provides information of those genes whose biological importance is previously not known. Clustering of genes is highly dependent on the similarity or dissimilarity criterion. Usually, microarray gene expression data is used to cluster genes. However, a microarray data may contain noise that may lead to undesired results. Therefore, incorporating gene ontology information may improve the clustering solutions. In this regard, an integrated dissimilarity measure is introduced for grouping functionally similar genes. It is comprised of city block distance and gene ontology based semantic dissimilarity. While, the city block distance is used to compute distance between two gene expression vectors, gene ontology based semantic dissimilarity measure is used for incorporating biological knowledge. The importance of the integrated dissimilarity measure is shown by incorporating it in different c-means clustering algorithms including rough-fuzzy clustering algorithms. In this work it has been shown that incorporation of integrated dissimilarity measure increases the functional similarity of cluster of genes as compared to the methods that are based on either type of dissimilarity measure. It is also observed that the rough-fuzzy clustering algorithm performs better with the new dissimilarity measure compared to different c-means clustering algorithms.

2 citations



Book ChapterDOI
05 Dec 2017
TL;DR: An existing robust mutual information based Maximum-Relevance Maximum-Significance algorithm has been used and is found to generate more robust integrated networks of miRNA-mRNA in ovarian cancer.
Abstract: Ovarian cancer is a fatal gynecologic cancer. Altered expression of biomarkers leads to this deadly cancer. Therefore, understanding the underlying biological mechanisms may help in developing a robust diagnostic as well as a prognostic tool. It has been demonstrated in various studies the pathways associated with ovarian cancer have dysregulated miRNA as well as mRNA expression. Identification of miRNA-mRNA regulatory modules may help in understanding the mechanism of altered ovarian cancer pathways. In this regard, an existing robust mutual information based Maximum-Relevance Maximum-Significance algorithm has been used for identification of miRNA-mRNA regulatory modules in ovarian cancer. A set of miRNA-mRNA modules are identified first than their association with ovarian cancer are studied exhaustively. The effectiveness of the proposed approach is compared with existing methods. The proposed approach is found to generate more robust integrated networks of miRNA-mRNA in ovarian cancer.

1 citations