scispace - formally typeset
Search or ask a question

Showing papers by "T. W. Phillips published in 2000"


Journal ArticleDOI
TL;DR: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2).
Abstract: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2). Up to 48 J ( 12%) of the laser energy is transferred to 2x10(13) protons of energy >10 MeV. The energy spectrum exhibits a sharp high-energy cutoff as high as 58 MeV on the axis of the beam which decreases in energy with increasing off axis angle. Proton induced nuclear processes have been observed and used to characterize the beam.

1,496 citations


Journal ArticleDOI
TL;DR: In this paper, the energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques.
Abstract: In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very shar...

868 citations


Journal ArticleDOI
TL;DR: A quantitative comparison of the high energy electrons and the bremsstrahlung spectrum, as measured by photonuclear reaction yields, including the photoinduced fission of 238U is reported.
Abstract: A new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic, with energies extending well above the threshold for nuclear processes, is studied using a petawatt laser system. In solid target experiments with focused intensities exceeding 10(20) W/cm(2), high energy electron generation, hard bremsstrahlung, and nuclear phenomena have been observed. We report here a quantitative comparison of the high energy electrons and the bremsstrahlung spectrum, as measured by photonuclear reaction yields, including the photoinduced fission of 238U.

195 citations


Journal ArticleDOI
TL;DR: Boehly et al. as mentioned in this paper used a simple model for the accelerating field region, and the time history of the target electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete.
Abstract: Spectral measurements have been made of charged fusion products produced in deuterium + helium-3 filled targets irradiated by the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Comparing the energy shifts of four particle types has allowed two distinct physical processes to be probed: Electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the fusion burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple model for the accelerating field region, the time history of the target electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the fusion burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing fundamental charged-particle stopping-power predictions to be tested. The results provide the first experimental verification of the general form of stopping power theories over ...

61 citations


Journal ArticleDOI
TL;DR: Boehly et al. as mentioned in this paper used 14.7 MeV deuterium-helium3 (D-3He) proton spectra for diagnosing shell areal density (ρR) and fuel ion temperature (Ti).
Abstract: Recent work has resulted in the first high-resolution, spectroscopic measurements of energetic charged particles on OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 496 (1997)]. Energy spectra of charged fusion products have been obtained from two spectrometers, and have been used to deduce various physical quantities in imploded capsules. In this paper the first use of 14.7 MeV deuterium–helium3 (D–3He) proton spectra for diagnosing shell areal density (ρR) and fuel ion temperature (Ti) is discussed. For thick-plastic shell capsules, shell areal densities between 20 and 70 mg/cm2 and ion temperatures between 3 and 5 keV have been determined. The spectral linewidths associated with such capsules are found to be wider than the doppler widths. This effect, the focus of future study, is the result of ρR evolution during the burn; or is the result of an extended burn region; or results from nonuniformities in the shell. For thin-glass shell capsules, the spectral linewidths are dominated by the do...

52 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe recent experiments in which they have observed electrons accelerated to 100 MeV, photo-nuclear"ssion, positron}electron pair creation, monoenergetic electron jets and intense beams of protons emitted from the back surface of a laser-irradiated target.
Abstract: Recent experiments at the LLNL Petawatt Laser have demonstrated the generation of intense, high-energy beams of electrons and ions from the interaction of ultra-intense laser light with solid targets. The focused laser intensities are as high as 6]1020 W/cm2, at which point the quiver energies of the target electrons extend to &10 MeV. In this new, fully relativistic regime of laser}plasma interactions, nuclear processes become important and nuclear techniques are required to diagnose the high-energy particle production. We describe recent experiments in which we have observed electrons accelerated to 100 MeV, photo-nuclear"ssion, positron}electron pair creation, monoenergetic electron jets and intense beams of protons emitted from the back surface of a laser-irradiated target. ( 2000 Elsevier Science B.V. All rights reserved.

50 citations


Journal ArticleDOI
TL;DR: In this article, a hybrid Ti:sapphire-nd:glass laser system was developed, which produced up to 680 J of energy on target at 1054 nm in a compressed 440/spl plusmn/20-fs pulse by use of 94-cm diffraction gratings.
Abstract: We have developed a hybrid Ti:sapphire-Nd:glass laser system that produces more than 1.5 PW of peak power. The system has produced up to 680 J of energy on target at 1054 nm in a compressed 440/spl plusmn/20-fs pulse by use of 94-cm diffraction gratings. A focused irradiance of up to 6/spl times/10/sup 20/ W/cm/sup 2/ was achieved using an on-axis parabolic mirror and adaptive optic wavefront control. Experiments with the petawatt laser system focused the beam on solid targets and produced a strongly relativistic interaction. Energy content, spectra, and angular pattern of the photon, electron, and ion radiations were diagnosed in a number of ways, including several nuclear activation techniques. Approximately 40-50% of the laser energy was converted to broadly beamed hot electrons, with an associated bremsstrahlung beam. High luminosity ion beams were observed normal to the rear surface of various targets with energies up to /spl ges/55 MeV, representing /spl sim/7% of the laser energy. These and other results are presented.

46 citations


Book ChapterDOI
01 Jan 2000
TL;DR: The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes.
Abstract: The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to ~100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

3 citations