scispace - formally typeset

Author

Tieniu Tan

Bio: Tieniu Tan is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topic(s): Feature extraction & Iris recognition. The author has an hindex of 96, co-authored 704 publication(s) receiving 39487 citation(s). Previous affiliations of Tieniu Tan include Association for Computing Machinery & Center for Excellence in Education.
Papers
More filters

Journal ArticleDOI
01 Aug 2004-
TL;DR: This paper reviews recent developments and general strategies of the processing framework of visual surveillance in dynamic scenes, and analyzes possible research directions, e.g., occlusion handling, a combination of two and three-dimensional tracking, and fusion of information from multiple sensors, and remote surveillance.
Abstract: Visual surveillance in dynamic scenes, especially for humans and vehicles, is currently one of the most active research topics in computer vision. It has a wide spectrum of promising applications, including access control in special areas, human identification at a distance, crowd flux statistics and congestion analysis, detection of anomalous behaviors, and interactive surveillance using multiple cameras, etc. In general, the processing framework of visual surveillance in dynamic scenes includes the following stages: modeling of environments, detection of motion, classification of moving objects, tracking, understanding and description of behaviors, human identification, and fusion of data from multiple cameras. We review recent developments and general strategies of all these stages. Finally, we analyze possible research directions, e.g., occlusion handling, a combination of twoand three-dimensional tracking, a combination of motion analysis and biometrics, anomaly detection and behavior prediction, content-based retrieval of surveillance videos, behavior understanding and natural language description, fusion of information from multiple sensors, and remote surveillance.

2,246 citations


Journal ArticleDOI
Liang Wang1, Tieniu Tan1, Huazhong Ning1, Weiming Hu1Institutions (1)
TL;DR: A simple but efficient gait recognition algorithm using spatial-temporal silhouette analysis is proposed that implicitly captures the structural and transitional characteristics of gait.
Abstract: Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk. In this paper, a simple but efficient gait recognition algorithm using spatial-temporal silhouette analysis is proposed. For each image sequence, a background subtraction algorithm and a simple correspondence procedure are first used to segment and track the moving silhouettes of a walking figure. Then, eigenspace transformation based on principal component analysis (PCA) is applied to time-varying distance signals derived from a sequence of silhouette images to reduce the dimensionality of the input feature space. Supervised pattern classification techniques are finally performed in the lower-dimensional eigenspace for recognition. This method implicitly captures the structural and transitional characteristics of gait. Extensive experimental results on outdoor image sequences demonstrate that the proposed algorithm has an encouraging recognition performance with relatively low computational cost.

1,089 citations


Journal ArticleDOI
Liang Wang1, Weiming Hu1, Tieniu Tan1Institutions (1)
TL;DR: This paper provides a comprehensive survey of research on computer-vision-based human motion analysis, namely human detection, tracking and activity understanding, and various methods for each issue are discussed in order to examine the state of the art.
Abstract: Visual analysis of human motion is currently one of the most active research topics in computer vision. This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality, smart surveillance, perceptual interface, etc. Human motion analysis concerns the detection, tracking and recognition of people, and more generally, the understanding of human behaviors, from image sequences involving humans. This paper provides a comprehensive survey of research on computer-vision-based human motion analysis. The emphasis is on three major issues involved in a general human motion analysis system, namely human detection, tracking and activity understanding. Various methods for each issue are discussed in order to examine the state of the art. Finally, some research challenges and future directions are discussed.

1,075 citations


Journal ArticleDOI
Li Ma1, Tieniu Tan1, Yunhong Wang1, Dexin Zhang1Institutions (1)
TL;DR: A bank of spatial filters, whose kernels are suitable for iris recognition, is used to capture local characteristics of the iris so as to produce discriminating texture features and results show that the proposed method has an encouraging performance.
Abstract: With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention over the past decade. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This paper focuses on the last issue and describes a new scheme for iris recognition from an image sequence. We first assess the quality of each image in the input sequence and select a clear iris image from such a sequence for subsequent recognition. A bank of spatial filters, whose kernels are suitable for iris recognition, is then used to capture local characteristics of the iris so as to produce discriminating texture features. Experimental results show that the proposed method has an encouraging performance. In particular, a comparative study of existing methods for iris recognition is conducted on an iris image database including 2,255 sequences from 213 subjects. Conclusions based on such a comparison using a nonparametric statistical method (the bootstrap) provide useful information for further research.

1,028 citations


Journal ArticleDOI
Li Ma1, Tieniu Tan1, Yunhong Wang1, Dexin Zhang1Institutions (1)
TL;DR: The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris.
Abstract: Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2 255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.

976 citations


Cited by
More filters

28 Jul 2005-
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations


Proceedings ArticleDOI
23 Jun 2014-
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also present experiments that provide insight into what the network learns, revealing a rich hierarchy of image features. Source code for the complete system is available at http://www.cs.berkeley.edu/~rbg/rcnn.

15,107 citations


Posted Content
TL;DR: This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.
Abstract: Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012---achieving a mAP of 53.3%. Our approach combines two key insights: (1) one can apply high-capacity convolutional neural networks (CNNs) to bottom-up region proposals in order to localize and segment objects and (2) when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost. Since we combine region proposals with CNNs, we call our method R-CNN: Regions with CNN features. We also compare R-CNN to OverFeat, a recently proposed sliding-window detector based on a similar CNN architecture. We find that R-CNN outperforms OverFeat by a large margin on the 200-class ILSVRC2013 detection dataset. Source code for the complete system is available at this http URL.

13,081 citations


Journal ArticleDOI
TL;DR: A generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis.
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

13,021 citations


Christopher M. Bishop1Institutions (1)
01 Jan 2006-
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations


Network Information
Related Authors (5)
Zhenan Sun

316 papers, 11.1K citations

90% related
Kaiqi Huang

265 papers, 10.4K citations

90% related
Yongzhen Huang

97 papers, 3.6K citations

89% related
Zhaoxiang Zhang

269 papers, 5.1K citations

88% related
Ran He

303 papers, 8.7K citations

87% related
Performance
Metrics

Author's H-index: 96

No. of papers from the Author in previous years
YearPapers
202128
202039
201933
201839
201739
201636