scispace - formally typeset
Search or ask a question

Showing papers by "Vladimir Brusic published in 2012"


Journal ArticleDOI
TL;DR: A new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach, which is replaced with a statistic and stochastic model based on the numerical discretization of the BoltZmann equation.

63 citations


Journal ArticleDOI
TL;DR: In vitro studies support the hypothesis that leukemia-driven genetic alterations are targeted by the immune system in association with a clinical response, and suggest the possibility of immunizing relapsed patients with CML against newly acquired tumor neoantigens.
Abstract: Purpose: Characterization of an approach to identify leukemia neoantigens arising in the context of drug resistance. Experimental Design: We assessed whether leukemia neoantigens could be generated from drug-resistant mutations in BCR-ABL after imatinib relapse in patients with chronic myelogenous leukemia (CML). Results: We computationally predicted that approximately 70 peptides derived from 26 BCR-ABL mutations would bind eight common alleles of MHC class I (IC 50 50 = 28 nmol/L), and showed that this peptide is endogenously processed and presented. Polyfunctional E255K-specific CD8+ T cells were detected in two imatinib-resistant HLA-A3+ CML patients concurrent with an effective anti-CML response to further therapy. Conclusions: Our in vitro studies support the hypothesis that leukemia-driven genetic alterations are targeted by the immune system in association with a clinical response, and suggest the possibility of immunizing relapsed patients with CML against newly acquired tumor neoantigens. Clin Cancer Res; 18(20); 5761–72. ©2012 AACR .

53 citations


Journal ArticleDOI
TL;DR: A cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci, are designed.
Abstract: High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

39 citations


Journal ArticleDOI
TL;DR: The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.
Abstract: Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ∼≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.

16 citations


Patent
04 Jun 2012
TL;DR: In this paper, methods for identifying at least one conserved peptide block in three or more homologous polypeptides are provided and compositions comprising of peptides were provided.
Abstract: Methods for identifying at least one conserved peptide block in three or more homologous polypeptides are provided and compositions comprising conserved peptides are provided. More particularly, methods for selecting conserved peptides in variable viral polypeptides for use in immunogenic compositions are provided.

7 citations


Journal ArticleDOI
16 Nov 2012-Blood
TL;DR: Results from next-generation DNA sequencing are exploited to detect somatic mutations together with algorithms that predict peptide binding to HLA class I and to determine if tumor neoantigens are naturally recognized by cytotoxic T lymphocytes.

4 citations


Journal ArticleDOI
TL;DR: A cross-section of research leading from biological data to knowledge and to technological applications, the InCoB2012 theme, is introduced in this editorial, which included sessions organized by the Pan-Asian Pacific Genome Initiative and a Machine Learning in Immunology competition.
Abstract: Ten years ago when Asia-Pacific Bioinformatics Network held the first International Conference on Bioinformatics (InCoB) in Bangkok its theme was North-South Networking. At that time InCoB aimed to provide biologists and bioinformatics researchers in the Asia-Pacific region a forum to meet, interact with, and disseminate knowledge about the burgeoning field of bioinformatics. Meanwhile InCoB has evolved into a major regional bioinformatics conference that attracts not only talented and established scientists from the region but increasingly also from East Asia, North America and Europe. Since 2006 InCoB yielded 114 articles in BMC Bioinformatics supplement issues that have been cited nearly 1,000 times to date. In part, these developments reflect the success of bioinformatics education and continuous efforts to integrate and utilize bioinformatics in biotechnology and biosciences in the Asia-Pacific region. A cross-section of research leading from biological data to knowledge and to technological applications, the InCoB2012 theme, is introduced in this editorial. Other highlights included sessions organized by the Pan-Asian Pacific Genome Initiative and a Machine Learning in Immunology competition. InCoB2013 is scheduled for September 18-21, 2013 at Suzhou, China.

3 citations


Journal ArticleDOI
TL;DR: This work demonstrates the use of mathematical models that support the study of mechanisms of tuberculosis infection and discusses how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into higher-level knowledge of basic immunology.
Abstract: Revolutions in biotechnology and information technology have produced enormous amounts of biomedical data. Processing and analysis of these data are accelerating the expansion of our knowledge of biological systems. These advances are changing the way biomedical research, development, and applications are done. Clinical data complement the basic biology data, enabling detailed descriptions and modeling of various healthy and diseased states, disease progression, and the responses to therapies. The availability of data representing various biological states, processes, and their time dependencies enables the study of biological systems at various levels of organization, from molecule to whole organism, and even at population levels. Multiple sources of data support a rapidly growing body of biomedical knowledge; however, our ability to analyze and interpret these data lags far behind data generation and storage capacity. Computational models are increasingly used to help interpret biomedical data produced by high-throughput genomics, proteomics, and immunomics projects [1–3]. Advanced applications of computer models that enable the simulation of biological processes are used to generate hypotheses and plan experiments [4–7]. Appropriately interfaced with biomedical databases, computational models enable rapid access to higher-level knowledge and its sharing through data mining and knowledge discovery approaches. In this special issue, we take an interest in the investigation of the physiology and pathology of the immune responses, particularly the cellular and molecular processes. The paper contributed by R. Carvalho et al. presents an approach in which a computational model represents the interaction of mycobacterium infection with the innate immune system in zebrafish. They use the Petri Net formalism to model interaction between key host elements involved in granuloma formation and infection dissemination, defining a qualitative model for the understanding and description of causal relations within this dynamic process. Their systems in biology framework incorporates mathematical modeling to generate and test hypotheses, to perform virtual experiments, and to make experimentally verifiable predictions. This work demonstrates the use of mathematical models that support the study of mechanisms of tuberculosis infection. The immune system is able to respond more vigorously to the secondary contact with a given antigen than to the priming contact. Vaccination protocols generally include at least two doses, in order to obtain high antibody titers. In particular, studies performed in transgenic mouse models of Alzheimer's disease have demonstrated that antibodies against beta-amyloid are able to reduce plaques and improve cognition. In mouse models as well as in clinical trials in Alzheimer's disease patients, induction of high titers of anti-beta-amyloid antibodies correlates with the therapeutic efficacy of vaccination. F. Castiglione et al. have analyzed relations between the time elapsed from the first dose (priming) and the second dose (boost) on the antibody titers, coupling in vivo experiments with computer simulations to asses the effect of delaying the second injection. A major challenge in immunology is the translation of data into knowledge given the inherent complexity and dynamics of human physiology. The physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. J. Klinke II and Q. Wang review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into higher-level knowledge of basic immunology for use in practical applications, such as improvement of therapies. These concepts are illustrated using two immunology-related examples: behavior of beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. M. Pennisi presents a mathematical model developed to reproduce the immune response entitled with the combined administration of activated OT1 cytotoxic T lymphocytes (CTLs) and AntiCD137 monoclonal antibodies. This treatment is directed against melanoma in B16 OVA mouse models exposed to a specific immunotherapy strategy. In this paper, two compartments have been modeled: the injection point compartment where the treatment is administered and the skin compartment where melanoma tumor cells proliferate. The outcomes of the mathematical model are in good agreement with the in vivo results. In particular the sensitivity analysis highlighted the key role of OT1 CTLs and suggests that a possible reduction of the number of injected antibodies should not affect substantially the treatment efficacy. Bacterial infections can be acute or chronic. The chronic bacterial infections are characterized by a large bacterial load or by an infection where bacteria grow rapidly. In these cases the immune response is not capable of completely eliminating the infection, leading to the formation of a pattern known as microabscess (or abscess). The microabscess is characterized by an area comprising fluids, bacteria, immune cells (mainly neutrophils), and many types of dead cells. This distinct pattern of formation can only be numerically reproduced and studied by models that capture the spatio-temporal dynamics of the human immune system. B. Pigozzo et al. developed and implemented a computational model to study the process of microabscess formation during bacterial infection. Cats infected with the feline immunodeficiency virus (FIV) develop an acquired immunodeficiency syndrome (AIDS), similarly to humans infected with HIV. FIV infection causes an acute viremia, which decreases after several weeks, and the appearance of a subpopulation of activated CD8+ T cells that we refer to as CD8βlow cells. The expansion of this activated T cell population is recognized as an important marker of FIV infection and disease. Characterization of the CD8βlow population's complex pattern of expansion, including its correlation with other disease markers such as viral load, is likely to increase researchers' understanding of FIV infection and AIDS pathogenesis. B. Ribba et al. propose two simple independent mathematical equations to analyze the time evolution of CD8βlow population size and of viral load during primary infection in cats with FIV. They developed the models using a population approach and mixed-effects regression techniques, based on repeated measurements in more than 100 cats infected with FIV. Molecular dynamics (MD) simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that a simulation has converged. In the paper contributed by W. Schreiner et al. a method named “lagged RMSD-analysis” is proposed to determine if an MD-simulation has provided a sufficiently precise model. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Dt. In summary, these contributions present state of the art modeling of the immune system. The research papers appearing in this special issue will serve as a guide to current developments and a guide to emerging applications in the fascinating field of immune system modeling. Ultimately, the utility of computational/mathematical and other quantitative approaches will help provide better healthcare. The seven papers in this volume demonstrate various aspects of modeling of immune processes and preclinical studies of immune responses. Francesco Pappalardo Vladimir Brusic Holger Frohlich

1 citations