scispace - formally typeset
Search or ask a question

Showing papers by "Wade H. Elmer published in 2021"


Journal ArticleDOI
TL;DR: The practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages is reasserted, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy.
Abstract: Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available.

82 citations


Journal ArticleDOI
24 Mar 2021-ACS Nano
TL;DR: In this article, the authors describe the emerging field of "Nanophytovirology" as a potential management approach to combat plant viral diseases, and specifically describe the potential mechanisms underlying NPs-plant-virus interactions.
Abstract: Phytoviruses are highly destructive plant pathogens, causing significant agricultural losses due to their genomic diversity, rapid, and dynamic evolution, and the general inadequacy of management options. Although an increasing number of studies are being published demonstrating the efficacy of engineered nanomaterials to treat a range of plant pathogens, very little work has been done with phytoviruses. Herein, we describe the emerging field of "Nanophytovirology" as a potential management approach to combat plant viral diseases. Because of their special physiochemical properties, nanoparticles (NPs) can interact with viruses, their vectors, and the host plants in a variety of specific and useful ways. We specifically describe the potential mechanisms underlying NPs-plant-virus interactions and explore the antiviral role of NPs. We discuss the limited literature, as well as the challenges and research gaps that are instrumental to the successful development of a nanotechnology-based, multidisciplinary approach for timely detection, treatment, and prevention of viral diseases.

47 citations


Journal ArticleDOI
TL;DR: In this article, a silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon (Citrullus lanatus) to enhance plant growth while mitigating development of the Fusarium wilt disease caused by fusarium oxysporum f. niveum.
Abstract: Projected population increases over the next 30 years have elevated the need to develop novel agricultural technologies to dramatically increase crop yield, particularly under conditions of high pathogen pressure. In this study, silica nanoparticles (NPs) with tunable dissolution rates were synthesized and applied to watermelon (Citrullus lanatus) to enhance plant growth while mitigating development of the Fusarium wilt disease caused by Fusarium oxysporum f. sp. niveum. The hydrolysis rates of the silica particles were controlled by the degree of condensation or the catalytic activity of aminosilane. The results demonstrate that the plants treated with fast dissolving NPs maintained or increased biomass whereas the particle-free plants had a 34% decrease in biomass. Further, higher silicon concentrations were measured in root parts when the plants were treated with fast dissolving NPs, indicating effective silicic acid delivery. In a follow-up field study over 2.5 months, the fast dissolving NP treatment enhanced fruit yield by 81.5% in comparison to untreated plants. These findings indicate that the colloidal behavior of designed nanoparticles can be critical to nanoparticle-plant interactions, leading to disease suppression and plant health as part of a novel strategy for nanoenabled agriculture.

36 citations


Journal ArticleDOI
20 Jun 2021-ACS Nano
TL;DR: In this article, organic elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. lycopersici on tomatoes.
Abstract: In agriculture, loss of crop yield to pathogen damage seriously threatens efforts to achieve global food security. In the present work, "organic" elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. sp. lycopersici on tomatoes. Foliar application and seed treatment with SNPs (30-100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 1 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of the expression of pathogenesis-related and antioxidase-related genes (upregulated by 11-352%) and enhancement of the activity and content of disease-related biomolecules (enhanced by 5-49%). In addition, transmission electron microscopy imaging shows that SNPs were distributed in the tomato stem and directly inactivated in vivo pathogens. The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. The findings highlight the significant potential of SNPs as an eco-friendly and sustainable crop protection strategy.

31 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the antifungal efficacy of copper oxide nanoparticle (CuO NP)-embedded hydrogels, which were synthesized by loading CuO nanoparticles (NPs) in a hydrogel formed from cross-linked interaction between chitosan and acrylic acid, against Fusarium wilt of lettuce (Lactuca sativa) caused by fusarium oxysporum f. sp.
Abstract: The use of nanotechnology to suppress crop diseases has attracted increasing attention in agriculture. The present work investigated the antifungal efficacy of copper oxide nanoparticle (CuO NP)-embedded hydrogels, which were synthesized by loading CuO nanoparticles (NPs) in hydrogels formed from cross-linked interaction between chitosan and acrylic acid, against Fusarium wilt of lettuce (Lactuca sativa) caused by Fusarium oxysporum f. sp. lactucae. In comparison with CuO NPs, 7-day Cu dissolution from CuO NP-embedded hydrogels was 34.2-94.8% slower regardless of media type, including water, potato dextrose broth, or a soil extract. In a greenhouse study, upon exposure to CuO NP-embedded hydrogels, CuO NPs, or Kocide 3000 with equivalent amounts of Cu (31 mg/kg), the fresh shoot biomass was significantly increased by 40.5, 26.1 and 27.2%, respectively, as compared to that of the infected control. Notably, CuO NP-embedded hydrogels enhanced uptake of P, Mn, Zn, and Mg and increased the levels of organic acids as compared to the diseased control. Increased salicylic acid (SA) and decreased jasmonic acid (JA) and abscisic acid (ABA) levels with the addition of different forms of Cu may have enhanced disease resistance. Taken together, our findings provide useful information and approach for improving the delivery efficiency of agrichemicals via nanoenabled strategies and an advanced understanding of plant defense mechanisms triggered by Cu-based NPs.

29 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanisms by which large and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato.
Abstract: The present study investigated the mechanisms by which large- and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato. Both nHA sizes at 9.3 mg/L (low) and 46.5 mg/L (high dose) phosphorus (P) were foliar-sprayed on Fusarium-infected tomato leaf surfaces three times. Diseased shoot mass was increased by 40% upon exposure to the low dose of large-sized nHA compared to disease controls. Exposure to both nHA sizes significantly elevated phenylalanine ammonialyase activity and total phenolic content in Fusarium-infected shoots by 30-80% and 40-68%, respectively. Shoot salicylic acid content was also increased by 10-45%, suggesting the potential relationship between antioxidant and phytohormone pathways in nHA-promoted defense against fungal infection. Exposure to the high dose of both nHA sizes increased the root P content by 27-46%. A constrained analysis of principal coordinates suggests that high dose of both nHA sizes significantly altered the fatty acid profile in diseased tomato. Particularly, the diseased root C18:3 content was increased by 28-31% in the large-sized nHA treatments, indicating that nHA remodeled the cell membrane as part of defense against Fusarium infection. Taken together, our findings demonstrate the important role of nHA in promoting disease suppression for the sustainable use of nHA in nanoenabled agriculture.

21 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the role of nanoparticles of metal oxides in the management of Fusarium oxysporum f. sp. chrysanthemi.
Abstract: Micronutrients applied as nanoparticles of metal oxides have shown efficacy in vegetable and other crops for improving yield and reducing Fusarium diseases, but their role in ornamental crop management has not been investigated. In 2017, 2018, and 2020, nanoparticles of CuO, Mn2O3, or ZnO were foliarly applied at 500 μg/mL (0.6 mg/plant) to chrysanthemum transplants and planted in potting soil noninfested or infested with Fusarium oxysporum f. sp. chrysanthemi. An untreated control and a commercial fungicide, Fludioxonil, was also included. Chrysanthemums treated with nanoscale CuO had a 55, 30, and 32% reduction in disease severity ratings compared to untreated plants in 2017, 2018, and 2020, respectively. Specifically, the average dry biomass for the three years was reduced 22% by disease, but treatment with nanoscale CuO led to a 23% increase when compared to controls. Similar trends with plant height were observed. Horticultural quality was improved 28% with nano CuO and was equal to the fungicide. Nanoscale Mn2O3 and the fungicide did not consistently reduce disease ratings or increase dry biomass each year. Nanoscale ZnO was ineffective. Nanoscale CuO-treated plants had 24 to 48% more Cu/g tissue than controls (P < 0.001). These findings agree with past reports on food crops where single applications of nanoscale CuO improved plant health, growth, and yield and could offer significant impacts for managing plant diseases on ornamentals.

18 citations


Journal ArticleDOI
TL;DR: This work examines the interactions between copper oxide (CuO) nanoparticles and pumpkin xylem fluid to understand corona formation in an important part of the plant vasculature system and uses CuO nanoparticles because they have emerged as a promising micronutrient source for the suppression of fungal diseases.
Abstract: Biomolecular coatings (coronas) that form on nanomaterials have been widely investigated in animal and bacterial cell culture and in the extracellular and intracellular fluids of animals. Such coronas influence the distribution of nanoparticles within organisms, their uptake by cells, and their storage in intracellular compartments. Plants can be exposed to nanoparticles via either intentional application of nanomaterials in agriculture or inadvertently due, for example, to biosolids amendment of soils. Development of a mechanistic understanding of nanoparticle transport and fate within plants requires consideration of corona acquisition within plants, particularly within the vascular fluids that transport nanoparticles throughout plants. Here, we examine the interactions between copper oxide (CuO) nanoparticles and pumpkin xylem fluid to understand corona formation in an important part of the plant vasculature system. We used CuO nanoparticles because they have emerged as a promising micronutrient source for the suppression of fungal diseases. The corona was composed primarily of proteins, despite the higher abundance of carbohydrates in xylem fluid. We used X-ray photoelectron spectroscopy to determine the thickness of the protein corona. Polyacrylamide gel electrophoresis revealed that protein binding to the CuO nanoparticle surface was selective; the most abundant proteins in the corona were not the most abundant ones in the xylem fluid. We used in situ attenuated total reflectance Fourier-transform infrared spectroscopy to show that the protein–CuO NP interactions were quasi-irreversible, while carbohydrate–CuO interactions were reversible. Corona formation is expected to influence the distribution and transformation of nanomaterials in plants.

14 citations


Journal ArticleDOI
TL;DR: Leaf tissue analyses from the greenhouse experiments showed that Cu concentration in leaves was reduced when CuO NP was combined with other NPs even when application rates were the same amount, suggesting a simple competition for entry sites may explain why combinations of CuONP and Mn2O3NP reduced efficacy but does not explain the lack of inhibition between Cu and Zn.
Abstract: Verticillium wilt, caused by Verticillium dahliae, is one of the major diseases of eggplants. Nanoparticles (NPs) of CuO, Mn2O3, and ZnO were sprayed alone onto leaves of young eggplants and in dif...

11 citations


Journal ArticleDOI
TL;DR: In this article, the effect of biodegradable polymeric lignin-based nanoparticles and zein nanoparticles (ZNP) on soybean plant health has been investigated.

8 citations