scispace - formally typeset
Search or ask a question

Showing papers by "Weixin Cheng published in 2012"


Journal ArticleDOI
29 Jun 2012-PLOS ONE
TL;DR: Experimental results support the initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history.
Abstract: Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.

68 citations


Journal ArticleDOI
TL;DR: Higher rhizodeposit quality is one of the most likely causes to the higher RPE of the nodulated soy bean compared to the non-nodulated soybean, and RPE on soil organic C decomposition was not linearly proportional to R PE on soil net N mineralization.
Abstract: The phenomenon that rhizosphere processes significantly control soil organic matter (SOM) decomposition, also termed rhizosphere priming effect (RPE), is now increasingly recognized as significant as the effects of soil temperature and moisture on SOM decomposition. However, the exact mechanisms responsible for RPE remain largely unknown. Particularly, some reports have suggested that the quality of rhizodeposits may play a significant role in causing different levels of RPE among various plant species. However, direct evidence for the “rhizodeposit quality hypothesis” has been lacking. Here we tested the hypothesis by investigating RPE on soil carbon (C) and nitrogen (N) mineralization of two soybean (Glycine max L. Merr.) isolines differing only in their ability to form nodules and to fix N2, and thus differing in tissue N concentration and rhizodeposit quality. We used a continuous 13C-labeling method for measuring RPE on soil organic C decomposition, and employed an N-budgeting method for quantifying RPE on soil net N mineralization. We found that the rhizodeposits from nodulated soybean produced a stronger RPE (53% vs. 26%) on soil organic C decomposition than the rhizodeposits from non-nodulated soybean at the maturity stage when nodulated soybean had significantly higher plant tissue N concentration but similar plant biomass, while both soybean isolines produced a similar RPE (33–34%) at the vegetative stage when there was no difference in plant tissue N concentration or plant biomass. The levels of RPE on soil net N mineralization were similar between the two isolines, ranging from 25% at the vegetative stage to 38–46% at the maturity stage. Moreover, RPE on soil organic C decomposition was not linearly proportional to RPE on soil net N mineralization. These results indicate that higher rhizodeposit quality is one of the most likely causes to the higher RPE of the nodulated soybean compared to the non-nodulated soybean. Further investigations of rhizodeposit quality and quantity between the two soybean isolines are warranted to further test this rhizodeposit quality hypothesis.

52 citations