scispace - formally typeset
X

Xiaogang Peng

Researcher at Zhejiang University

Publications -  218
Citations -  56492

Xiaogang Peng is an academic researcher from Zhejiang University. The author has contributed to research in topics: Quantum dot & Nanocrystal. The author has an hindex of 87, co-authored 205 publications receiving 52446 citations. Previous affiliations of Xiaogang Peng include Lawrence Berkeley National Laboratory & Jilin University.

Papers
More filters
Journal ArticleDOI

Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals

TL;DR: In this article, the extinction coefficient per mole of nanocrystals at the first exitonic absorption peak, e.g., for high-quality CdTe, CdSe, and CdS, was found to be strongly dependent on the size of the nanocrystal, between a square and a cubic dependence.
Journal ArticleDOI

Shape control of CdSe nanocrystals

TL;DR: Control of the growth kinetics of the II–VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one.
Journal ArticleDOI

Organization of 'nanocrystal molecules' using DNA

TL;DR: A strategy for the synthesis of 'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions is described.
Journal ArticleDOI

Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor.

TL;DR: This paper proves that Cd(CH3)2 can be replaced by CdO and develops a one-pot synthesis which does not require separated preparation of cadmium complex and is reproducible and simple and thus can be readily scaled up for industrial production.
Journal ArticleDOI

Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility

TL;DR: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported in this paper, where shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39.