Author
Xiaolei Ma
Other affiliations: Chinese Ministry of Public Security, University of Washington
Bio: Xiaolei Ma is an academic researcher from Beihang University. The author has contributed to research in topic(s): Artificial neural network & Deep learning. The author has an hindex of 29, co-authored 83 publication(s) receiving 5977 citation(s). Previous affiliations of Xiaolei Ma include Chinese Ministry of Public Security & University of Washington.
Papers
More filters
[...]
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
1,019 citations
[...]
TL;DR: Wang et al. as mentioned in this paper proposed a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy.
Abstract: This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.
603 citations
[...]
TL;DR: In this article, the authors formulated the vehicle routing problem of simultaneous deliveries and pickups with split loads and time windows (VRPSDPSLTW) as a mixed-integer programming problem and developed a hybrid heuristic algorithm to solve this problem.
Abstract: The vehicle routing problem with simultaneous deliveries and pickups (VRPSDP) has attracted much research interest because of the potential to provide cost savings to transportation and logistics operators. Several extensions of VRPSDP exist. Of these extensions, the simultaneous deliveries and pickups with split loads problem (SDPSLP) has been proposed to eliminate vehicle capacity constraints, as well as allow the deliveries or pickups for a customer to be split into multiple visits. Although delivery and pickup activities are often constrained by time windows, few studies have considered such constraints when SDPSLP has been addressed. To fill the gap, this paper formulates the vehicle routing problem of simultaneous deliveries and pickups with split loads and time windows (VRPSDPSLTW) as a mixed-integer programming problem. A hybrid heuristic algorithm was developed to solve this problem. Solomon data sets with minor modifications were applied to test the effectiveness of the solution algorithm. The r...
534 citations
Posted Content•
[...]
TL;DR: The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks and outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time.
Abstract: This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.
515 citations
[...]
TL;DR: Wang et al. as mentioned in this paper proposed an efficient and effective data-mining procedure that models the travel patterns of transit riders in Beijing, China and identified trip chains based on the temporal and spatial characteristics of their smart card transaction data.
Abstract: To mitigate the congestion caused by the ever increasing number of privately owned automobiles, public transit is highly promoted by transportation agencies worldwide. A better understanding of travel patterns and regularity at the “magnitude” level will enable transit authorities to evaluate the services they offer, adjust marketing strategies, retain loyal customers and improve overall transit performance. However, it is fairly challenging to identify travel patterns for individual transit riders in a large dataset. This paper proposes an efficient and effective data-mining procedure that models the travel patterns of transit riders in Beijing, China. Transit riders’ trip chains are identified based on the temporal and spatial characteristics of their smart card transaction data. The Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm then analyzes the identified trip chains to detect transit riders’ historical travel patterns and the K-Means++ clustering algorithm and the rough-set theory are jointly applied to cluster and classify travel pattern regularities. The performance of the rough-set-based algorithm is compared with those of other prevailing classification algorithms. The results indicate that the proposed rough-set-based algorithm outperforms other commonly used data-mining algorithms in terms of accuracy and efficiency.
426 citations
Cited by
More filters
[...]
01 Sep 1984
1,490 citations
[...]
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
1,019 citations
Proceedings Article•
[...]
TL;DR: In this paper, the authors propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flows.
Abstract: Spatiotemporal forecasting has various applications in neuroscience, climate and transportation domain. Traffic forecasting is one canonical example of such learning task. The task is challenging due to (1) complex spatial dependency on road networks, (2) non-linear temporal dynamics with changing road conditions and (3) inherent difficulty of long-term forecasting. To address these challenges, we propose to model the traffic flow as a diffusion process on a directed graph and introduce Diffusion Convolutional Recurrent Neural Network (DCRNN), a deep learning framework for traffic forecasting that incorporates both spatial and temporal dependency in the traffic flow. Specifically, DCRNN captures the spatial dependency using bidirectional random walks on the graph, and the temporal dependency using the encoder-decoder architecture with scheduled sampling. We evaluate the framework on two real-world large scale road network traffic datasets and observe consistent improvement of 12% - 15% over state-of-the-art baselines.
847 citations
[...]
TL;DR: A novel traffic forecast model based on long short-term memory (LSTM) network is proposed, which considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units.
Abstract: Short-term traffic forecast is one of the essential issues in intelligent transportation system. Accurate forecast result enables commuters make appropriate travel modes, travel routes, and departure time, which is meaningful in traffic management. To promote the forecast accuracy, a feasible way is to develop a more effective approach for traffic data analysis. The availability of abundant traffic data and computation power emerge in recent years, which motivates us to improve the accuracy of short-term traffic forecast via deep learning approaches. A novel traffic forecast model based on long short-term memory (LSTM) network is proposed. Different from conventional forecast models, the proposed LSTM network considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units. A comparison with other representative forecast models validates that the proposed LSTM network can achieve a better performance.
744 citations
[...]
TL;DR: In this article, the authors provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain.
Abstract: In the era of the Internet of Things (IoT), an enormous amount of sensing devices collect and/or generate various sensory data over time for a wide range of fields and applications. Based on the nature of the application, these devices will result in big or fast/real-time data streams. Applying analytics over such data streams to discover new information, predict future insights, and make control decisions is a crucial process that makes IoT a worthy paradigm for businesses and a quality-of-life improving technology. In this paper, we provide a thorough overview on using a class of advanced machine learning techniques, namely deep learning (DL), to facilitate the analytics and learning in the IoT domain. We start by articulating IoT data characteristics and identifying two major treatments for IoT data from a machine learning perspective, namely IoT big data analytics and IoT streaming data analytics. We also discuss why DL is a promising approach to achieve the desired analytics in these types of data and applications. The potential of using emerging DL techniques for IoT data analytics are then discussed, and its promises and challenges are introduced. We present a comprehensive background on different DL architectures and algorithms. We also analyze and summarize major reported research attempts that leveraged DL in the IoT domain. The smart IoT devices that have incorporated DL in their intelligence background are also discussed. DL implementation approaches on the fog and cloud centers in support of IoT applications are also surveyed. Finally, we shed light on some challenges and potential directions for future research. At the end of each section, we highlight the lessons learned based on our experiments and review of the recent literature.
640 citations