Journal•ISSN: 0968-090X
Transportation Research Part C-emerging Technologies
About: Transportation Research Part C-emerging Technologies is an academic journal. The journal publishes majorly in the area(s): Poison control & Traffic flow. It has an ISSN identifier of 0968-090X. Over the lifetime, 3165 publication(s) have been published receiving 154496 citation(s).
Topics: Poison control, Traffic flow, Traffic congestion, Traffic simulation, Intelligent transportation system
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
Abstract: Neural networks have been extensively applied to short-term traffic prediction in the past years. This study proposes a novel architecture of neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamic in an effective manner. The LSTM NN can overcome the issue of back-propagated error decay through memory blocks, and thus exhibits the superior capability for time series prediction with long temporal dependency. In addition, the LSTM NN can automatically determine the optimal time lags. To validate the effectiveness of LSTM NN, travel speed data from traffic microwave detectors in Beijing are used for model training and testing. A comparison with different topologies of dynamic neural networks as well as other prevailing parametric and nonparametric algorithms suggests that LSTM NN can achieve the best prediction performance in terms of both accuracy and stability.
1,019 citations
[...]
TL;DR: This research effort seeks to examine the theoretical foundation of nonparametric regression and to answer the question of whether non parametric regression based on heuristically improved forecast generation methods approach the single interval traffic flow prediction performance of seasonal ARIMA models.
Abstract: Single point short-term traffic flow forecasting will play a key role in supporting demand forecasts needed by operational network models. Seasonal autoregressive integrated moving average (ARIMA), a classic parametric modeling approach to time series, and nonparametric regression models have been proposed as well suited for application to single point short-term traffic flow forecasting. Past research has shown seasonal ARIMA models to deliver results that are statistically superior to basic implementations of nonparametric regression. However, the advantages associated with a data-driven nonparametric forecasting approach motivate further investigation of refined nonparametric forecasting methods. Following this motivation, this research effort seeks to examine the theoretical foundation of nonparametric regression and to answer the question of whether nonparametric regression based on heuristically improved forecast generation methods approach the single interval traffic flow prediction performance of seasonal ARIMA models.
811 citations
[...]
TL;DR: In this article, the authors describe the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use.
Abstract: Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles. This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers. Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.
743 citations
[...]
TL;DR: The most promising research avenues for smart card data in this field are presented; for example, comparison of planned and implemented schedules, systematic schedule adjustments, and the survival models applied to ridership.
Abstract: Smart card automated fare collection systems are being used more and more by public transit agencies. While their main purpose is to collect revenue, they also produce large quantities of very detailed data on onboard transactions. These data can be very useful to transit planners, from the day-to-day operation of the transit system to the strategic long-term planning of the network. This review covers several aspects of smart card data use in the public transit context. First, the technologies are presented: the hardware and information systems required to operate these tools; and privacy concerns and legal issues related to the dissemination of smart card data, data storage, and encryption are addressed. Then, the various uses of the data at three levels of management are described: strategic (long-term planning), tactical (service adjustments and network development), and operational (ridership statistics and performance indicators). Also reported are smart card commercialization experiments conducted all over the world. Finally, the most promising research avenues for smart card data in this field are presented; for example, comparison of planned and implemented schedules, systematic schedule adjustments, and the survival models applied to ridership.
738 citations
[...]
TL;DR: The constraints and limitations of existing map matching algorithms are uncovered by an in-depth literature review and some ideas for monitoring the integrity of map-matching algorithms are presented.
Abstract: Map-matching algorithms integrate positioning data with spatial road network data (roadway centrelines) to identify the correct link on which a vehicle is travelling and to determine the location of a vehicle on a link. A map-matching algorithm could be used as a key component to improve the performance of systems that support the navigation function of intelligent transport systems (ITS). The required horizontal positioning accuracy of such ITS applications is in the range of 1 m to 40 m (95%) with relatively stringent requirements placed on integrity (quality), continuity and system availability. A number of map-matching algorithms have been developed by researchers around the world using different techniques such as topological analysis of spatial road network data, probabilistic theory, Kalman filter, fuzzy logic, and belief theory. The performances of these algorithms have improved over the years due to the application of advanced techniques in the map matching processes and improvements in the quality of both positioning and spatial road network data. However, these algorithms are not always capable of supporting ITS applications with high required navigation performance, especially in difficult and complex environments such as dense urban areas. This suggests that research should be directed at identifying any constraints and limitations of existing map matching algorithms as a prerequisite for the formulation of algorithm improvements. The objectives of this paper are thus to uncover the constraints and limitations by an in-depth literature review and to recommend ideas to address them. This paper also highlights the potential impacts of the forthcoming European Galileo system and the European Geostationary Overlay Service (EGNOS) on the performance of map matching algorithms. Although not addressed in detail, the paper also presents some ideas for monitoring the integrity of map-matching algorithms. The map-matching algorithms considered in this paper are generic and do not assume knowledge of ‘future’ information (i.e. based on either cost or time). Clearly, such data would result in relatively simple map-matching algorithms.
728 citations