scispace - formally typeset
Search or ask a question

Showing papers by "Yaowu Zheng published in 2020"


Journal ArticleDOI
TL;DR: Intriguingly, approximately 50% VEGFB repression in adipose tissues can almost completely mimic the effects of universal Vegfb deletion, suggesting adipose VegFB is a major regulator of energy metabolism and may be important in prevention and treatment of obesity.
Abstract: Excessive fat accumulation causes obesity and many diseases. Previous study demonstrates VEGFB universal knockout induces obese phenotypes including expansion of white adipose tissue, whitening of brown adipose tissue, increase of fat accumulation and reduction in energy consumption. However, roles of VEGFB in adipose tissues are not clear. In this study, we have generated a mouse model with adipose-specific VEGFB repression using CRISPR/dCas9 system (Vegfb AdipoDown ) and investigated the roles of VEGFB in adipose development and energy metabolism. VEGFB repression induced significant changes in adipose tissue structure and function. Vegfb AdipoDown mice have larger body sizes, larger volume of white adipose tissues than its wild type littermates. Adipose-specific VEGFB repression induced morphological and functional transformation of adipose tissues toward white adipose for energy storage. Metabolic processes are broadly changed in Vegfb AdipoDown adipose tissues including carbohydrate metabolism, lipid metabolism, nucleotide metabolism and amino acid metabolism. We have demonstrated that adipose VEGFB repression can recapitulate most of the phenotypes of the whole body VEGFB knockout mouse. Intriguingly, approximately 50% VEGFB repression in adipose tissues can almost completely mimic the effects of universal Vegfb deletion, suggesting adipose VEGFB is a major regulator of energy metabolism and may be important in prevention and treatment of obesity.

13 citations


Journal ArticleDOI
20 Oct 2020-Gene
TL;DR: Results confirm Dip2C may play important roles in brain development and function andGene ontology (GO) analysis indicated that DEGs in brain are enriched in neurological functions including 'memory', 'neuropeptide signaling pathway', and 'response to amphetamine' while KEGG analysis shows that 'ne neuroactive ligand-receptor interaction pathway' is the most significantly enriched.

12 citations


Journal ArticleDOI
TL;DR: This study shows that Dip2B expression is widely distributed in various neuronal, myocardial, endothelial, and epithelial cell types during embryogenesis and demonstrates an important role of Dip2b in lung maturation and survival.
Abstract: Molecular and anatomical functions of mammalian Dip2 family members (Dip2A, Dip2B and Dip2C) during organogenesis are largely unknown. Here, we explored the indispensable role of Dip2B in mouse lung development. Using a LacZ reporter, we explored Dip2B expression during embryogenesis. This study shows that Dip2B expression is widely distributed in various neuronal, myocardial, endothelial, and epithelial cell types during embryogenesis. Target disruption of Dip2b leads to intrauterine growth restriction, defective lung formation and perinatal mortality. Dip2B is crucial for late lung maturation rather than early-branching morphogenesis. The morphological analysis shows that Dip2b loss leads to disrupted air sac formation, interstitium septation and increased cellularity. In BrdU incorporation assay, it is shown that Dip2b loss results in increased cell proliferation at the saccular stage of lung development. RNA-seq analysis reveals that 1431 genes are affected in Dip2b deficient lungs at E18.5 gestation age. Gene ontology analysis indicates cell cycle-related genes are upregulated and immune system related genes are downregulated. KEGG analysis identifies oxidative phosphorylation as the most overrepresented pathways along with the G2/M phase transition pathway. Loss of Dip2b de-represses the expression of alveolar type I and type II molecular markers. Altogether, the study demonstrates an important role of Dip2B in lung maturation and survival.

8 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the transcriptome of Dip2B-deficient mouse embryonic lung fibroblasts (MELFs) isolated from E14.5 embryos by RNA-Seq.
Abstract: Disco-interacting protein 2 homolog B (Dip2B) is a member of Dip2 family encoded by Dip2b gene. Dip2B has been reported to regulate murine epithelial KIT+ progenitor cell expansion and differentiation epigenetically via exosomal miRNA targeting during salivary gland organogenesis. However, its molecular functions, cellular activities and biological process remain unstudied. Here, we investigated the transcriptome of Dip2B-deficient mouse embryonic lung fibroblasts (MELFs) isolated from E14.5 embryos by RNA-Seq. Expression profiling identified 1369 and 1104 differentially expressed genes (DEGs) from Dip2b−/− and Dip2b+/− MELFs in comparisons to wild-type (Dip2b+/+). Functional clustering of DEGs revealed that many gene ontology terms belong to membrane activities such as ‘integral component of plasma membrane’, and ‘ion channel activity’, suggesting possible roles of Dip2B in membrane integrity and membrane function. KEGG pathway analysis revealed that multiple metabolic pathways are affected in Dip2b−/− and Dip2b+/− when compared to Dip2b+/+ MELFs. These include ‘protein digestion and absorption’, ‘pancreatic secretion’ and ‘steroid hormone synthesis pathway’. These results suggest that Dip2B may play important roles in metabolism. Molecular function analysis shows transcription factors including Hox-genes, bHLH-genes, and Forkhead-genes are significantly down-regulated in Dip2b−/− MELFs. These genes are critical in embryo development and cell differentiation. In addition, Dip2B-deficient MELFs demonstrated a reduction in cell proliferation and migration, and an increase in apoptosis. All results indicate that Dip2B plays multiple roles in cell proliferation, migration and apoptosis during embryogenesis and may participate in control of metabolism. This study provides valuable information for further understanding of the function and regulatory mechanisms of Dip2B.

7 citations


Journal ArticleDOI
TL;DR: It is shown that the conserved disco-interacting protein B (DIP2B) which consists of a DMAP1 domain and a crotonobetaine/carnitine CoA ligase (Caic) domain, is highly expressed in the excitatory neurons of the hippocampus, revealing a new conserved regulator of neuronal morphology.
Abstract: Axonal development is essential to the establishment of neuronal morphology and circuitry, although the mechanisms underlying axonal outgrowth during the early developmental stages remain unclear. Here, we showed that the conserved disco-interacting protein B (DIP2B) which consists of a DMAP1 domain and a crotonobetaine/carnitine CoA ligase (Caic) domain, is highly expressed in the excitatory neurons of the hippocampus. DIP2B knockout led to excessive axonal outgrowth but not polarity at an early developmental stage. Furthermore, the loss of DIP2B inhibited synaptic transmission for both spontaneous and rapid release in cultured hippocampal neurons. Interestingly, DIP2B function during axonal outgrowth requires tubulin acetylation. These findings reveal a new conserved regulator of neuronal morphology and provide a novel intervention mechanism for neurocognitive disorders.

4 citations