scispace - formally typeset
Y

Yongsheng Chen

Researcher at Nankai University

Publications -  696
Citations -  65257

Yongsheng Chen is an academic researcher from Nankai University. The author has contributed to research in topics: Organic solar cell & Graphene. The author has an hindex of 107, co-authored 465 publications receiving 55962 citations. Previous affiliations of Yongsheng Chen include Tianjin University & Tianjin University of Technology.

Papers
More filters
Journal ArticleDOI

Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors

TL;DR: These experiments demonstrate solution-processed GO films have potential as transparent electrodes and sheet resistance and optical transparency using different reduction treatments.
Journal ArticleDOI

Solution Properties of Single-Walled Carbon Nanotubes

TL;DR: Both ionic and covalent solution-phase chemistry with concomitant modulation of the SWNT band structure were demonstrated to study the effects of chemical modifications on the band gaps of theSWNTs.
Journal ArticleDOI

Supercapacitor devices based on graphene materials

TL;DR: In this paper, a supercapacitor with a maximum specific capacitance of 205 F/g with a measured power density of 10 kW/kg at energy density of 28.5 Wh/kg in an aqueous electrolyte solution has been obtained.
Journal ArticleDOI

Organic and solution-processed tandem solar cells with 17.3% efficiency

TL;DR: In this article, a semi-empirical model analysis and using the tandem cell strategy to overcome the low charge mobility of organic materials, leading to a limit on the active-layer thickness and efficient light absorption was performed.
Journal ArticleDOI

Broadband and Tunable High‐Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam

TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.