scispace - formally typeset
Search or ask a question

Showing papers by "Yuyin Zhou published in 2019"


Proceedings Article•DOI•
15 Jun 2019
TL;DR: DI-2FGSM as discussed by the authors improves the transferability of adversarial examples by creating diverse input patterns, instead of only using the original images to generate adversarial samples, the method applies random transformations to the input images at each iteration.
Abstract: Though CNNs have achieved the state-of-the-art performance on various vision tasks, they are vulnerable to adversarial examples --- crafted by adding human-imperceptible perturbations to clean images. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. By evaluating our method against top defense solutions and official baselines from NIPS 2017 adversarial competition, the enhanced attack reaches an average success rate of 73.0%, which outperforms the top-1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future. Code is available at https://github.com/cihangxie/DI-2-FGSM.

485 citations


Journal Article•DOI•
Yan Wang1, Yuyin Zhou1, Wei Shen1, Seyoun Park1, Elliot K. Fishman1, Alan L. Yuille1 •
TL;DR: This work introduces a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity.

164 citations


Proceedings Article•DOI•
04 Mar 2019
TL;DR: Deep Multi-Planar Co-Training is proposed, whose contributions can be divided into two folds: 1) the deep model is learned in a co-training style which can mine consensus information from multiple planes like the sagittal, coronal, and axial planes; 2) Multi-planar fusion is applied to generate more reliable pseudo-labels, which alleviates the errors occurring in the pseudo-Labels and thus can help to train better segmentation networks.
Abstract: In multi-organ segmentation of abdominal CT scans, most existing fully supervised deep learning algorithms require lots of voxel-wise annotations, which are usually difficult, expensive, and slow to obtain. In comparison, massive unlabeled 3D CT volumes are usually easily accessible. Current mainstream works to address semi-supervised biomedical image segmentation problem are mostly graph-based. By contrast, deep network based semi-supervised learning methods have not drawn much attention in this field. In this work, we propose Deep Multi-Planar Co-Training (DMPCT), whose contributions can be divided into two folds: 1) The deep model is learned in a co-training style which can mine consensus information from multiple planes like the sagittal, coronal, and axial planes; 2) Multi-planar fusion is applied to generate more reliable pseudo-labels, which alleviates the errors occurring in the pseudo-labels and thus can help to train better segmentation networks. Experiments are done on our newly collected large dataset with 100 unlabeled cases as well as 210 labeled cases where 16 anatomical structures are manually annotated by four radiologists and confirmed by a senior expert. The results suggest that DMPCT significantly outperforms the fully supervised method by more than 4% especially when only a small set of annotations is used.

130 citations


Posted Content•
TL;DR: PaNN achieves state-of-the-art performance on the MICCAI2015 challenge ``Multi-Atlas Labeling Beyond the Cranial Vault'', a competition on organ segmentation in the abdomen, and is reformulated as a min-max form and optimized via the stochastic primal-dual gradient algorithm.
Abstract: Accurate multi-organ abdominal CT segmentation is essential to many clinical applications such as computer-aided intervention. As data annotation requires massive human labor from experienced radiologists, it is common that training data are partially labeled, e.g., pancreas datasets only have the pancreas labeled while leaving the rest marked as background. However, these background labels can be misleading in multi-organ segmentation since the "background" usually contains some other organs of interest. To address the background ambiguity in these partially-labeled datasets, we propose Prior-aware Neural Network (PaNN) via explicitly incorporating anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge. More specifically, PaNN assumes that the average organ size distributions in the abdomen should approximate their empirical distributions, a prior statistics obtained from the fully-labeled dataset. As our training objective is difficult to be directly optimized using stochastic gradient descent [20], we propose to reformulate it in a min-max form and optimize it via the stochastic primal-dual gradient algorithm. PaNN achieves state-of-the-art performance on the MICCAI2015 challenge "Multi-Atlas Labeling Beyond the Cranial Vault", a competition on organ segmentation in the abdomen. We report an average Dice score of 84.97%, surpassing the prior art by a large margin of 3.27%.

104 citations


Proceedings Article•DOI•
12 Apr 2019
TL;DR: Prior-aware neural networks (PaNN) as discussed by the authors explicitly incorporate anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge, which achieves state-of-the-art performance on the MICCAI2015 challenge "Multi-Atlas Labeling Beyond the Cranial Vault"
Abstract: Accurate multi-organ abdominal CT segmentation is essential to many clinical applications such as computer-aided intervention. As data annotation requires massive human labor from experienced radiologists, it is common that training data is usually partially-labeled. However, these background labels can be misleading in multi-organ segmentation since the ``background'' usually contains some other organs of interest. To address the background ambiguity in these partially-labeled datasets, we propose Prior-aware Neural Network (PaNN) via explicitly incorporating anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge. More specifically, PaNN assumes that the average organ size distributions in the abdomen should approximate their empirical distributions, a prior statistics obtained from the fully-labeled dataset. As our objective is difficult to be directly optimized using stochastic gradient descent, it is reformulated as a min-max form and optimized via the stochastic primal-dual gradient algorithm. PaNN achieves state-of-the-art performance on the MICCAI2015 challenge ``Multi-Atlas Labeling Beyond the Cranial Vault'', a competition on organ segmentation in the abdomen. We report an average Dice score of 84.97%, surpassing the prior art by a large margin of 3.27%. Code and models will be made publicly available.

100 citations



Posted Content•
TL;DR: This paper proposes to learn an adversarial pattern to effectively attack all instances belonging to the same object category, referred to as Universal Physical Camouflage Attack (UPC), which crafts camouflage by jointly fooling the region proposal network, as well as misleading the classifier and the regressor to output errors.
Abstract: In this paper, we study physical adversarial attacks on object detectors in the wild. Previous works mostly craft instance-dependent perturbations only for rigid or planar objects. To this end, we propose to learn an adversarial pattern to effectively attack all instances belonging to the same object category, referred to as Universal Physical Camouflage Attack (UPC). Concretely, UPC crafts camouflage by jointly fooling the region proposal network, as well as misleading the classifier and the regressor to output errors. In order to make UPC effective for non-rigid or non-planar objects, we introduce a set of transformations for mimicking deformable properties. We additionally impose optimization constraint to make generated patterns look natural to human observers. To fairly evaluate the effectiveness of different physical-world attacks, we present the first standardized virtual database, AttackScenes, which simulates the real 3D world in a controllable and reproducible environment. Extensive experiments suggest the superiority of our proposed UPC compared with existing physical adversarial attackers not only in virtual environments (AttackScenes), but also in real-world physical environments. Code and dataset are available at this https URL.

58 citations


Book Chapter•DOI•
13 Oct 2019
TL;DR: Hyper-Pairing Network (HPN) is presented, a 3D fully convolution neural network which effectively integrates information from different phases of PDAC automatic segmentation by integrating multi-phase information.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with an overall five-year survival rate of 8%. Due to subtle texture changes of PDAC, pancreatic dual-phase imaging is recommended for better diagnosis of pancreatic disease. In this study, we aim at enhancing PDAC automatic segmentation by integrating multi-phase information (i.e., arterial phase and venous phase). To this end, we present Hyper-Pairing Network (HPN), a 3D fully convolution neural network which effectively integrates information from different phases. The proposed approach consists of a dual path network where the two parallel streams are interconnected with hyper-connections for intensive information exchange. Additionally, a pairing loss is added to encourage the commonality between high-level feature representations of different phases. Compared to prior arts which use single phase data, HPN reports a significant improvement up to 7.73% (from 56.21% to 63.94%) in terms of DSC.

38 citations


Posted Content•
TL;DR: In this paper, a 3D fully convolution neural network (HPN) is proposed to integrate information from different phases of the PDAC with a dual path network, where the two parallel streams are interconnected with hyper-connections for intensive information exchange.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with an overall five-year survival rate of 8%. Due to subtle texture changes of PDAC, pancreatic dual-phase imaging is recommended for better diagnosis of pancreatic disease. In this study, we aim at enhancing PDAC automatic segmentation by integrating multi-phase information (i.e., arterial phase and venous phase). To this end, we present Hyper-Pairing Network (HPN), a 3D fully convolution neural network which effectively integrates information from different phases. The proposed approach consists of a dual path network where the two parallel streams are interconnected with hyper-connections for intensive information exchange. Additionally, a pairing loss is added to encourage the commonality between high-level feature representations of different phases. Compared to prior arts which use single phase data, HPN reports a significant improvement up to 7.73% (from 56.21% to 63.94%) in terms of DSC.

21 citations


Posted Content•
30 Jan 2019
TL;DR: This work proposes Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, and presents an early attempt of training a metric-preserving network, thereby defending the metric against adversarial attacks.
Abstract: Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Meanwhile, we also present an early attempt of training a metric-preserving network, thereby defending the metric against adversarial attacks. At last, by benchmarking various adversarial settings, we expect that our work can facilitate the development of adversarial attack and defense in metric-based applications.

16 citations


Book Chapter•DOI•
01 Jan 2019
TL;DR: Wang et al. as discussed by the authors proposed a 3D-based coarse-to-fine framework for medical image segmentation, which can leverage the rich spatial information along all three axes.
Abstract: Although deep neural networks have been a dominant method for many 2D vision tasks, it is still challenging to apply them to 3D tasks, such as medical image segmentation, due to the limited amount of annotated 3D data and limited computational resources. In this chapter, by rethinking the strategy to apply 3D Convolutional Neural Networks to segment medical images, we propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges. The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes. We further analyze the threat of adversarial attacks on the proposed framework and show how to defend against the attack. We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset, where the first two and the last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-Sorensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over \(2\%\), and the worst case is improved by \(7\%\) to reach almost \(70\%\), which indicates the reliability of our framework in clinical applications.

Posted Content•
TL;DR: In this article, a multi-scale attentional network (MSAN) is proposed for segmentation of arterial bleeding from abdominal CT images. But, it cannot handle the challenges induced by variation of target sizes.
Abstract: Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of multiple foci of arterial bleeding from abdominopelvic trauma CT could provide rapid objective measurements of the total extent of active bleeding, potentially augmenting outcome prediction at the point of care, while improving patient triage, allocation of appropriate resources, and time to definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, and multiplicity of bleeding foci. Existing work [4] presents a heuristic rule-based segmentation technique which requires multiple stages and cannot be efficiently optimized end-to-end. To this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans. MSAN consists of the following components: 1) an encoder which fully integrates the global contextual information from holistic 2D slices; 2) a multi-scale strategy applied both in the training stage and the inference stage to handle the challenges induced by variation of target sizes; 3) an attentional module to further refine the deep features, leading to better segmentation quality; and 4) a multi-view mechanism to fully leverage the 3D information. Our MSAN reports a significant improvement of more than 7% compared to prior arts in terms of DSC.

Posted Content•
10 Sep 2019
TL;DR: This paper proposes to learn an adversarial pattern to effectively attack all instances belonging to the same object category, referred to as Universal Physical Camouflage Attack (UPC), which crafts camouflage by jointly fooling the region proposal network, as well as misleading the classifier and the regressor to output errors.
Abstract: In this paper, we study physical adversarial attacks on object detectors in the wild. Prior arts on this matter mostly craft instance-dependent perturbations only for rigid and planar objects. To this end, we propose to learn an adversarial pattern to effectively attack all instances belonging to the same object category (e.g., person, car), referred to as Universal Physical Camouflage Attack (UPC). Concretely, UPC crafts camouflage by jointly fooling the region proposal network, as well as misleading the classifier and the regressor to output errors. In order to make UPC effective for articulated non-rigid or non-planar objects, we introduce a set of transformations for the generated camouflage patterns to mimic their deformable properties. We additionally impose optimization constraint to make generated patterns look natural for human observers. To fairly evaluate the effectiveness of different physical-world attacks on object detectors, we present the first standardized virtual database, AttackScenes, which simulates the real 3D world in a controllable and reproducible environment. Extensive experiments suggest the superiority of our proposed UPC compared with existing physical adversarial attackers not only in virtual environments (AttackScenes), but also in real-world physical environments. Codes, models, and demos are publicly available at https://mesunhlf.github.io/index_physical.html.

Posted Content•
TL;DR: This work proposes Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can effectively generate adversarial examples for re-ID, and expects that this work can facilitate the development of robust feature learning with the experimental conclusions.
Abstract: Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance, especially considering the highly strict requirement of public safety. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can effectively generate adversarial examples for re-ID. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Moreover, by benchmarking various adversarial settings, we expect that our work can facilitate the development of robust feature learning with the experimental conclusions we have drawn.

Posted Content•
TL;DR: Zhang et al. as discussed by the authors proposed Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can facilitate the development of adversarial attack and defense in metric-based applications.
Abstract: Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Meanwhile, we also present an early attempt of training a metric-preserving network, thereby defending the metric against adversarial attacks. At last, by benchmarking various adversarial settings, we expect that our work can facilitate the development of adversarial attack and defense in metric-based applications.

Posted Content•
TL;DR: This work proposes a geometry-aware tubular structure segmentation method, Deep Distance Transform (DDT), which combines intuitions from the classical distance transform for skeletonization and modern deep segmentation networks, and applies it on six medical image datasets.
Abstract: Tubular structure segmentation in medical images, e.g., segmenting vessels in CT scans, serves as a vital step in the use of computers to aid in screening early stages of related diseases. But automatic tubular structure segmentation in CT scans is a challenging problem, due to issues such as poor contrast, noise and complicated background. A tubular structure usually has a cylinder-like shape which can be well represented by its skeleton and cross-sectional radii (scales). Inspired by this, we propose a geometry-aware tubular structure segmentation method, Deep Distance Transform (DDT), which combines intuitions from the classical distance transform for skeletonization and modern deep segmentation networks. DDT first learns a multi-task network to predict a segmentation mask for a tubular structure and a distance map. Each value in the map represents the distance from each tubular structure voxel to the tubular structure surface. Then the segmentation mask is refined by leveraging the shape prior reconstructed from the distance map. We apply our DDT on six medical image datasets. The experiments show that (1) DDT can boost tubular structure segmentation performance significantly (e.g., over 13% improvement measured by DSC for pancreatic duct segmentation), and (2) DDT additionally provides a geometrical measurement for a tubular structure, which is important for clinical diagnosis (e.g., the cross-sectional scale of a pancreatic duct can be an indicator for pancreatic cancer).

Book Chapter•DOI•
13 Oct 2019
TL;DR: The Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans, is presented.
Abstract: Trauma is the worldwide leading cause of death and disability in those younger than 45 years, and pelvic fractures are a major source of morbidity and mortality. Automated segmentation of multiple foci of arterial bleeding from abdominopelvic trauma CT could provide rapid objective measurements of the total extent of active bleeding, potentially augmenting outcome prediction at the point of care, while improving patient triage, allocation of appropriate resources, and time to definitive intervention. In spite of the importance of active bleeding in the quick tempo of trauma care, the task is still quite challenging due to the variable contrast, intensity, location, size, shape, and multiplicity of bleeding foci. Existing work presents a heuristic rule-based segmentation technique which requires multiple stages and cannot be efficiently optimized end-to-end. To this end, we present, Multi-Scale Attentional Network (MSAN), the first yet reliable end-to-end network, for automated segmentation of active hemorrhage from contrast-enhanced trauma CT scans. MSAN consists of the following components: (1) an encoder which fully integrates the global contextual information from holistic 2D slices; (2) a multi-scale strategy applied both in the training stage and the inference stage to handle the challenges induced by variation of target sizes; (3) an attentional module to further refine the deep features, leading to better segmentation quality; and (4) a multi-view mechanism to leverage the 3D information. MSAN reports a significant improvement of more than \(7\%\) compared to prior arts in terms of DSC.

Book Chapter•DOI•
13 Oct 2019
TL;DR: This work designs a hybrid detector that surpasses the current state-of-the-art by a large margin with comparable speed and GPU memory consumption and can combine 3D knowledge effectively and provide higher quality backbone features.
Abstract: Lesion detection in CT (computed tomography) scan images is an important yet challenging task due to the low contrast of soft tissues and similar appearance between lesion and the background. Exploiting 3D context information has been studied extensively to improve detection accuracy. However, previous methods either use a 3D CNN which usually requires a sliding window strategy to inference and only acts on local patches; or simply concatenate feature maps of independent 2D CNNs to obtain 3D context information, which is less effective to capture 3D knowledge. To address these issues, we design a hybrid detector to combine benefits from both of the above methods. We propose to build several light-weighted 3D CNNs as subnets to bridge 2D CNNs’ intermediate features, so that 2D CNNs are connected with each other which interchange 3D context information while feed-forwarding. Comprehensive experiments in DeepLesion dataset show that our method can combine 3D knowledge effectively and provide higher quality backbone features. Our detector surpasses the current state-of-the-art by a large margin with comparable speed and GPU memory consumption.

Book Chapter•DOI•
01 Jan 2019
TL;DR: This chapter proposes two coarse-to-fine mechanisms which use prediction from the first (coarse) stage to shrink the input region for the second (fine) stage and inserts a saliency transformation module between the two stages.
Abstract: Deep neural networks have been widely adopted for automatic organ segmentation from abdominal CT scans. However, the segmentation accuracy of small organs (e.g., pancreas) or neoplasms (e.g., pancreatic cyst) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupy a large fraction of the input volume. In this chapter, we propose two coarse-to-fine mechanisms which use prediction from the first (coarse) stage to shrink the input region for the second (fine) stage. More specifically, the two stages in the first method are trained individually in a step-wise manner, so that the entire input region and the region cropped according to the bounding box are treated separately. While the second method inserts a saliency transformation module between the two stages so that the segmentation probability map from the previous iteration can be repeatedly converted as spatial weights to the current iteration. In training, it allows joint optimization over the deep networks. In testing, it propagates multi-stage visual information throughout iterations to improve segmentation accuracy. Experiments are performed on several CT datasets, including NIH pancreas, JHMI multi-organ, and JHMI pancreatic cyst dataset. Our proposed approach gives strong results in terms of DSC.

Posted Content•
TL;DR: This paper designs a system to extract the shape and texture feature at the same time for detecting pancreatic ductal adenocarcinoma, the most common pancreatic cancer, and proposes a two-stage method for this 3D classification task.
Abstract: Automatic abnormality detection in abdominal CT scans can help doctors improve the accuracy and efficiency in diagnosis. In this paper we aim at detecting pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Taking the fact that the existence of tumor can affect both the shape and the texture of pancreas, we design a system to extract the shape and texture feature at the same time for detecting PDAC. In this paper we propose a two-stage method for this 3D classification task. First, we segment the pancreas into a binary mask. Second, a FusionNet is proposed to take both the binary mask and CT image as input and perform a binary classification. The optimal architecture of the FusionNet is obtained by searching a pre-defined functional space. We show that the classification results using either shape or texture information are complementary, and by fusing them with the optimized architecture, the performance improves by a large margin. Our method achieves a specificity of 97% and a sensitivity of 92% on 200 normal scans and 136 scans with PDAC.

Book Chapter•DOI•
13 Oct 2019
TL;DR: Wang et al. as discussed by the authors proposed a two-stage method for 3D classification of pancreatic ductal adenocarcinoma (PDAC) using shape and texture features.
Abstract: Automatic abnormality detection in abdominal CT scans can help doctors improve the accuracy and efficiency in diagnosis. In this paper we aim at detecting pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Taking the fact that the existence of tumor can affect both the shape and the texture of pancreas, we design a system to extract the shape and texture feature at the same time for detecting PDAC. In this paper we propose a two-stage method for this 3D classification task. First, we segment the pancreas into a binary mask. Second, a FusionNet is proposed to take both the binary mask and CT image as input and perform a binary classification. The optimal architecture of the FusionNet is obtained by searching a pre-defined functional space. We show that the classification results using either shape or texture information are complementary, and by fusing them with the optimized architecture, the performance improves by a large margin. Our method achieves a specificity of 97% and a sensitivity of 92% on 200 normal scans and 136 scans with PDAC.