scispace - formally typeset

Showing papers in "Medical Image Analysis in 2019"


Journal ArticleDOI

[...]

TL;DR: A review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.
Abstract: Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique

546 citations


Journal ArticleDOI

[...]

TL;DR: Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency.
Abstract: We propose a novel attention gate (AG) model for medical image analysis that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules when using convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN models such as VGG or U-Net architectures with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed AG models are evaluated on a variety of tasks, including medical image classification and segmentation. For classification, we demonstrate the use case of AGs in scan plane detection for fetal ultrasound screening. We show that the proposed attention mechanism can provide efficient object localisation while improving the overall prediction performance by reducing false positives. For segmentation, the proposed architecture is evaluated on two large 3D CT abdominal datasets with manual annotations for multiple organs. Experimental results show that AG models consistently improve the prediction performance of the base architectures across different datasets and training sizes while preserving computational efficiency. Moreover, AGs guide the model activations to be focused around salient regions, which provides better insights into how model predictions are made. The source code for the proposed AG models is publicly available.

385 citations


Journal ArticleDOI

[...]

TL;DR: In this article, a survey of semi-supervised, multiple instance and transfer learning in medical image segmentation is presented, and connections between these learning scenarios, and opportunities for future research are discussed.
Abstract: Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods that can learn with less/other types of supervision, have been proposed. We give an overview of semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research. A dataset with the details of the surveyed papers is available via https://figshare.com/articles/Database_of_surveyed_literature_in_Not-so-supervised_a_survey_of_semi-supervised_multi-instance_and_transfer_learning_in_medical_image_analysis_/7479416.

329 citations


Journal ArticleDOI

[...]

TL;DR: Fast AnoGAN (f‐AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates is presented.
Abstract: Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-consuming. Furthermore, not all possibly relevant markers may be known and sufficiently well described a priori to even guide annotation. While supervised learning yields good results if expert labeled training data is available, the visual variability, and thus the vocabulary of findings, we can detect and exploit, is limited to the annotated lesions. Here, we present fast AnoGAN (f-AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates. We build a generative model of healthy training data, and propose and evaluate a fast mapping technique of new data to the GAN's latent space. The mapping is based on a trained encoder, and anomalies are detected via a combined anomaly score based on the building blocks of the trained model - comprising a discriminator feature residual error and an image reconstruction error. In the experiments on optical coherence tomography data, we compare the proposed method with alternative approaches, and provide comprehensive empirical evidence that f-AnoGAN outperforms alternative approaches and yields high anomaly detection accuracy. In addition, a visual Turing test with two retina experts showed that the generated images are indistinguishable from real normal retinal OCT images. The f-AnoGAN code is available at https://github.com/tSchlegl/f-AnoGAN.

318 citations


Journal ArticleDOI

[...]

TL;DR: In this paper, the Deep Learning Image Registration (DLIR) framework is proposed for unsupervised affine and deformable image registration, where CNNs are trained for image registration by exploiting image similarity analogous to conventional intensity-based image registration.
Abstract: Image registration, the process of aligning two or more images, is the core technique of many (semi-)automatic medical image analysis tasks. Recent studies have shown that deep learning methods, notably convolutional neural networks (ConvNets), can be used for image registration. Thus far training of ConvNets for registration was supervised using predefined example registrations. However, obtaining example registrations is not trivial. To circumvent the need for predefined examples, and thereby to increase convenience of training ConvNets for image registration, we propose the Deep Learning Image Registration (DLIR) framework for unsupervised affine and deformable image registration. In the DLIR framework ConvNets are trained for image registration by exploiting image similarity analogous to conventional intensity-based image registration. After a ConvNet has been trained with the DLIR framework, it can be used to register pairs of unseen images in one shot. We propose flexible ConvNets designs for affine image registration and for deformable image registration. By stacking multiple of these ConvNets into a larger architecture, we are able to perform coarse-to-fine image registration. We show for registration of cardiac cine MRI and registration of chest CT that performance of the DLIR framework is comparable to conventional image registration while being several orders of magnitude faster.

303 citations


Journal ArticleDOI

[...]

TL;DR: The Grand Challenge on Breast Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018) as mentioned in this paper.
Abstract: Breast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). BACH aimed at the classification and localization of clinically relevant histopathological classes in microscopy and whole-slide images from a large annotated dataset, specifically compiled and made publicly available for the challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. The submitted algorithms improved the state-of-the-art in automatic classification of breast cancer with microscopy images to an accuracy of 87%. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publicly available as to promote further improvements to the field of automatic classification in digital pathology.

214 citations


Journal ArticleDOI

[...]

TL;DR: In this paper, the authors proposed a novel up-sampling path which incorporates long skip and short-cut connections to overcome the feature map explosion in conventional FCN based architectures.
Abstract: Deep fully convolutional neural network (FCN) based architectures have shown great potential in medical image segmentation. However, such architectures usually have millions of parameters and inadequate number of training samples leading to over-fitting and poor generalization. In this paper, we present a novel DenseNet based FCN architecture for cardiac segmentation which is parameter and memory efficient. We propose a novel up-sampling path which incorporates long skip and short-cut connections to overcome the feature map explosion in conventional FCN based architectures. In order to process the input images at multiple scales and view points simultaneously, we propose to incorporate Inception module's parallel structures. We propose a novel dual loss function whose weighting scheme allows to combine advantages of cross-entropy and Dice loss leading to qualitative improvements in segmentation. We demonstrate computational efficacy of incorporating conventional computer vision techniques for region of interest detection in an end-to-end deep learning based segmentation framework. From the segmentation maps we extract clinically relevant cardiac parameters and hand-craft features which reflect the clinical diagnostic analysis and train an ensemble system for cardiac disease classification. We validate our proposed network architecture on three publicly available datasets, namely: (i) Automated Cardiac Diagnosis Challenge (ACDC-2017), (ii) Left Ventricular segmentation challenge (LV-2011), (iii) 2015 Kaggle Data Science Bowl cardiac challenge data. Our approach in ACDC-2017 challenge stood second place for segmentation and first place in automated cardiac disease diagnosis tasks with an accuracy of 100% on a limited testing set (n=50). In the LV-2011 challenge our approach attained 0.74 Jaccard index, which is so far the highest published result in fully automated algorithms. In the Kaggle challenge our approach for LV volume gave a Continuous Ranked Probability Score (CRPS) of 0.0127, which would have placed us tenth in the original challenge. Our approach combined both cardiac segmentation and disease diagnosis into a fully automated framework which is computationally efficient and hence has the potential to be incorporated in computer-aided diagnosis (CAD) tools for clinical application.

169 citations


Journal ArticleDOI

[...]

TL;DR: A novel convolutional neural network is presented for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass to separate clustered nuclei, resulting in an accurate segmentation.
Abstract: Nuclear segmentation and classification within Haematoxylin & Eosin stained histology images is a fundamental prerequisite in the digital pathology work-flow. The development of automated methods for nuclear segmentation and classification enables the quantitative analysis of tens of thousands of nuclei within a whole-slide pathology image, opening up possibilities of further analysis of large-scale nuclear morphometry. However, automated nuclear segmentation and classification is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intra-class variability such as the nuclei of tumour cells. Additionally, some of the nuclei are often clustered together. To address these challenges, we present a novel convolutional neural network for simultaneous nuclear segmentation and classification that leverages the instance-rich information encoded within the vertical and horizontal distances of nuclear pixels to their centres of mass. These distances are then utilised to separate clustered nuclei, resulting in an accurate segmentation, particularly in areas with overlapping instances. Then, for each segmented instance the network predicts the type of nucleus via a devoted up-sampling branch. We demonstrate state-of-the-art performance compared to other methods on multiple independent multi-tissue histology image datasets. As part of this work, we introduce a new dataset of Haematoxylin & Eosin stained colorectal adenocarcinoma image tiles, containing 24,319 exhaustively annotated nuclei with associated class labels.

159 citations


Journal ArticleDOI

[...]

TL;DR: A differentiable penalty is proposed, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation and has the potential to close the gap between weakly and fully supervised learning in semantic medical image segmentation.
Abstract: Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output (for instance, to constrain the size of the target region) can leverage unlabeled data, guiding the training process with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However, constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons. To the best of our knowledge, the method of Pathak et al. (2015a) is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals) from weak labels, mimicking full supervision and facilitating dual optimization. We propose to introduce a differentiable penalty, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple penalty-based approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly, it yields substantially better results than the Lagrangian-based constrained CNNs in Pathak et al. (2015a) , while reducing the computational demand for training. By annotating only a small fraction of the pixels, the proposed approach can reach a level of segmentation performance that is comparable to full supervision on three separate tasks. While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints, e.g., invariant shape moments (Klodt and Cremers, 2011) and other region statistics (Lim et al., 2014). Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic medical image segmentation. Our code is publicly available.

149 citations


Journal ArticleDOI

[...]

TL;DR: In this article, the authors compared stain color augmentation and normalization techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories.
Abstract: Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with images from one lab often underperform on unseen images from the other lab. Several techniques have been proposed to reduce the generalization error, mainly grouped into two categories: stain color augmentation and stain color normalization. The former simulates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter aims to match training and test color distributions in order to reduce stain variation. For the first time, we compared some of these techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization using a neural network. Based on our experimental results, we provide practical guidelines on how to use stain color augmentation and stain color normalization in future computational pathology applications.

147 citations


Journal ArticleDOI

[...]

TL;DR: A novel self-supervised learning strategy based on context restoration is proposed in order to better exploit unlabelled images and is validated in three common problems in medical imaging: classification, localization, and segmentation.
Abstract: Machine learning, particularly deep learning has boosted medical image analysis over the past years. Training a good model based on deep learning requires large amount of labelled data. However, it is often difficult to obtain a sufficient number of labelled images for training. In many scenarios the dataset in question consists of more unlabelled images than labelled ones. Therefore, boosting the performance of machine learning models by using unlabelled as well as labelled data is an important but challenging problem. Self-supervised learning presents one possible solution to this problem. However, existing self-supervised learning strategies applicable to medical images cannot result in significant performance improvement. Therefore, they often lead to only marginal improvements. In this paper, we propose a novel self-supervised learning strategy based on context restoration in order to better exploit unlabelled images. The context restoration strategy has three major features: 1) it learns semantic image features; 2) these image features are useful for different types of subsequent image analysis tasks; and 3) its implementation is simple. We validate the context restoration strategy in three common problems in medical imaging: classification, localization, and segmentation. For classification, we apply and test it to scan plane detection in fetal 2D ultrasound images; to localise abdominal organs in CT images; and to segment brain tumours in multi-modal MR images. In all three cases, self-supervised learning based on context restoration learns useful semantic features and lead to improved machine learning models for the above tasks.

Journal ArticleDOI

[...]

TL;DR: Combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state‐of‐the‐art segmentation method for knee bones and cartilage from MRI data.
Abstract: We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge “Segmentation of Knee Images 2010” (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.

Journal ArticleDOI

[...]

TL;DR: This work presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017.
Abstract: Knowledge of whole heart anatomy is a prerequisite for many clinical applications. Whole heart segmentation (WHS), which delineates substructures of the heart, can be very valuable for modeling and analysis of the anatomy and functions of the heart. However, automating this segmentation can be challenging due to the large variation of the heart shape, and different image qualities of the clinical data. To achieve this goal, an initial set of training data is generally needed for constructing priors or for training. Furthermore, it is difficult to perform comparisons between different methods, largely due to differences in the datasets and evaluation metrics used. This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017. The challenge provided 120 three-dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired in clinical environments with manual delineation. Ten algorithms for CT data and eleven algorithms for MRI data, submitted from twelve groups, have been evaluated. The results showed that the performance of CT WHS was generally better than that of MRI WHS. The segmentation of the substructures for different categories of patients could present different levels of challenge due to the difference in imaging and variations of heart shapes. The deep learning (DL)-based methods demonstrated great potential, though several of them reported poor results in the blinded evaluation. Their performance could vary greatly across different network structures and training strategies. The conventional algorithms, mainly based on multi-atlas segmentation, demonstrated good performance, though the accuracy and computational efficiency could be limited. The challenge, including provision of the annotated training data and the blinded evaluation for submitted algorithms on the test data, continues as an ongoing benchmarking resource via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/).This manuscript presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MMWHS) challenge, in conjunction with MICCAI-STACOM 2017. The challenge provides 120 three-dimensional cardiac images covering the whole heart, including 60 CT and 60 MRI volumes, all acquired in clinical environments with manual delineation. Ten algorithms for CT data and eleven algorithms for MRI data, submitted from twelve groups, have been evaluated. The results show that many of the deep learning (DL) based methods achieved high accuracy, even though the number of training datasets were limited. Several of them also reported poor results in the blinded evaluation, probably due to over fitting in their training. The conventional algorithms, mainly based on multi-atlas segmentation, demonstrated robust and stable performance, even though the accuracy is not as good as the best DL method in CT segmentation. The challenge, including provision of the annotated training data and the blinded evaluation for submitted algorithms on the test data, continues as an ongoing benchmarking resource.

Journal ArticleDOI

[...]

TL;DR: The achieved results are promising given the difficulty of the tasks and weakly‐labeled nature of the ground truth, however, further research is needed to improve the practical utility of image analysis methods for this task.
Abstract: Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.

Journal ArticleDOI

[...]

TL;DR: A fully convolutional neural network is proposed that counters the loss of information caused by max‐pooling by re‐introducing the original image at multiple points within the network, and introduces random transformations during test time for an enhanced segmentation result that simultaneously generates an uncertainty map, highlighting areas of ambiguity.
Abstract: The analysis of glandular morphology within colon histopathology images is an important step in determining the grade of colon cancer. Despite the importance of this task, manual segmentation is laborious, time-consuming and can suffer from subjectivity among pathologists. The rise of computational pathology has led to the development of automated methods for gland segmentation that aim to overcome the challenges of manual segmentation. However, this task is non-trivial due to the large variability in glandular appearance and the difficulty in differentiating between certain glandular and non-glandular histological structures. Furthermore, a measure of uncertainty is essential for diagnostic decision making. To address these challenges, we propose a fully convolutional neural network that counters the loss of information caused by max-pooling by re-introducing the original image at multiple points within the network. We also use atrous spatial pyramid pooling with varying dilation rates for preserving the resolution and multi-level aggregation. To incorporate uncertainty, we introduce random transformations during test time for an enhanced segmentation result that simultaneously generates an uncertainty map, highlighting areas of ambiguity. We show that this map can be used to define a metric for disregarding predictions with high uncertainty. The proposed network achieves state-of-the-art performance on the GlaS challenge dataset and on a second independent colorectal adenocarcinoma dataset. In addition, we perform gland instance segmentation on whole-slide images from two further datasets to highlight the generalisability of our method. As an extension, we introduce MILD-Net + for simultaneous gland and lumen segmentation, to increase the diagnostic power of the network.

Journal ArticleDOI

[...]

TL;DR: A probabilistic generative model is presented and an unsupervised learning-based inference algorithm is derived that uses insights from classical registration methods and makes use of recent developments in convolutional neural networks (CNNs).
Abstract: Classical deformable registration techniques achieve impressive results and offer a rigorous theoretical treatment, but are computationally intensive since they solve an optimization problem for each image pair. Recently, learning-based methods have facilitated fast registration by learning spatial deformation functions. However, these approaches use restricted deformation models, require supervised labels, or do not guarantee a diffeomorphic (topology-preserving) registration. Furthermore, learning-based registration tools have not been derived from a probabilistic framework that can offer uncertainty estimates. In this paper, we build a connection between classical and learning-based methods. We present a probabilistic generative model and derive an unsupervised learning-based inference algorithm that uses insights from classical registration methods and makes use of recent developments in convolutional neural networks (CNNs). We demonstrate our method on a 3D brain registration task for both images and anatomical surfaces, and provide extensive empirical analyses of the algorithm. Our principled approach results in state of the art accuracy and very fast runtimes, while providing diffeomorphic guarantees. Our implementation is available online at http://voxelmorph.csail.mit.edu .

Journal ArticleDOI

[...]

TL;DR: Zhang et al. as discussed by the authors designed a fully convolutional network that is subject to dual-guidance: ground-truth guidance using deformation fields obtained by an existing registration method; and image dissimilarity guidance using the difference between the images after registration.
Abstract: In this paper, we propose a deep learning approach for image registration by predicting deformation from image appearance. Since obtaining ground-truth deformation fields for training can be challenging, we design a fully convolutional network that is subject to dual-guidance: (1) Ground-truth guidance using deformation fields obtained by an existing registration method; and (2) Image dissimilarity guidance using the difference between the images after registration. The latter guidance helps avoid overly relying on the supervision from the training deformation fields, which could be inaccurate. For effective training, we further improve the deep convolutional network with gap filling, hierarchical loss, and multi-source strategies. Experiments on a variety of datasets show promising registration accuracy and efficiency compared with state-of-the-art methods.

Journal ArticleDOI

[...]

TL;DR: The proposed synergic deep learning model using multiple deep convolutional neural networks simultaneously and enabling them to mutually learn from each other achieves the state‐of‐the‐art performance in these medical image classification tasks.
Abstract: The classification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Although deep learning has shown proven advantages over traditional methods that rely on the handcrafted features, it remains challenging due to the significant intra-class variation and inter-class similarity caused by the diversity of imaging modalities and clinical pathologies. In this paper, we propose a synergic deep learning (SDL) model to address this issue by using multiple deep convolutional neural networks (DCNNs) simultaneously and enabling them to mutually learn from each other. Each pair of DCNNs has their learned image representation concatenated as the input of a synergic network, which has a fully connected structure that predicts whether the pair of input images belong to the same class. Thus, if one DCNN makes a correct classification, a mistake made by the other DCNN leads to a synergic error that serves as an extra force to update the model. This model can be trained end-to-end under the supervision of classification errors from DCNNs and synergic errors from each pair of DCNNs. Our experimental results on the ImageCLEF-2015, ImageCLEF-2016, ISIC-2016, and ISIC-2017 datasets indicate that the proposed SDL model achieves the state-of-the-art performance in these medical image classification tasks.

Journal ArticleDOI

[...]

TL;DR: This work introduces a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity.
Abstract: Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity. More specifically, OAN is a two-stage deep convolutional network, where deep network features from the first stage are combined with the original image, in a second stage, to reduce the complex background and enhance the discriminative information for the target organs. Intuitively, OAN reduces the effect of the complex background by focusing attention so that each organ only needs to be discriminated from its local background. RCs are added to the first stage to give the lower layers more semantic information thereby enabling them to adapt to the sizes of different organs. Our networks are trained on 2D views (slices) enabling us to use holistic information and allowing efficient computation (compared to using 3D patches). To compensate for the limited cross-sectional information of the original 3D volumetric CT, e.g., the connectivity between neighbor slices, multi-sectional images are reconstructed from the three different 2D view directions. Then we combine the segmentation results from the different views using statistical fusion, with a novel term relating the structural similarity of the 2D views to the original 3D structure. To train the network and evaluate results, 13 structures were manually annotated by four human raters and confirmed by a senior expert on 236 normal cases. We tested our algorithm by 4-fold cross-validation and computed Dice-Sorensen similarity coefficients (DSC) and surface distances for evaluating our estimates of the 13 structures. Our experiments show that the proposed approach gives strong results and outperforms 2D- and 3D-patch based state-of-the-art methods in terms of DSC and mean surface distances.

Journal ArticleDOI

[...]

TL;DR: This work proposes a CNN architecture that learns to split the localization task into two simpler sub‐problems, reducing the overall need for large training datasets, and proposes a fully convolutional SpatialConfiguration‐Net (SCN), which outperforms related methods in terms of landmark localization error.
Abstract: In many medical image analysis applications, only a limited amount of training data is available due to the costs of image acquisition and the large manual annotation effort required from experts. Training recent state-of-the-art machine learning methods like convolutional neural networks (CNNs) from small datasets is a challenging task. In this work on anatomical landmark localization, we propose a CNN architecture that learns to split the localization task into two simpler sub-problems, reducing the overall need for large training datasets. Our fully convolutional SpatialConfiguration-Net (SCN) learns this simplification due to multiplying the heatmap predictions of its two components and by training the network in an end-to-end manner. Thus, the SCN dedicates one component to locally accurate but ambiguous candidate predictions, while the other component improves robustness to ambiguities by incorporating the spatial configuration of landmarks. In our extensive experimental evaluation, we show that the proposed SCN outperforms related methods in terms of landmark localization error on a variety of size-limited 2D and 3D landmark localization datasets, i.e., hand radiographs, lateral cephalograms, hand MRIs, and spine CTs.

Journal ArticleDOI

[...]

TL;DR: Novel deep reinforcement learning (RL) strategies to train agents that can precisely and robustly localize target landmarks in medical scans are evaluated and the performance of these agents surpasses state‐of‐the‐art supervised and RL methods.
Abstract: Automatic detection of anatomical landmarks is an important step for a wide range of applications in medical image analysis. Manual annotation of landmarks is a tedious task and prone to observer errors. In this paper, we evaluate novel deep reinforcement learning (RL) strategies to train agents that can precisely and robustly localize target landmarks in medical scans. An artificial RL agent learns to identify the optimal path to the landmark by interacting with an environment, in our case 3D images. Furthermore, we investigate the use of fixed- and multi-scale search strategies with novel hierarchical action steps in a coarse-to-fine manner. Several deep Q-network (DQN) architectures are evaluated for detecting multiple landmarks using three different medical imaging datasets: fetal head ultrasound (US), adult brain and cardiac magnetic resonance imaging (MRI). The performance of our agents surpasses state-of-the-art supervised and RL methods. Our experiments also show that multi-scale search strategies perform significantly better than fixed-scale agents in images with large field of view and noisy background such as in cardiac MRI. Moreover, the novel hierarchical steps can significantly speed up the searching process by a factor of 4-5 times.

Journal ArticleDOI

[...]

TL;DR: An iterative instance segmentation approach that uses a fully convolutional neural network to segment and label vertebrae one after the other, independently of the number of visible vertebraes is proposed and compares favorably with state‐of‐the‐art methods.
Abstract: Precise segmentation and anatomical identification of the vertebrae provides the basis for automatic analysis of the spine, such as detection of vertebral compression fractures or other abnormalities. Most dedicated spine CT and MR scans as well as scans of the chest, abdomen or neck cover only part of the spine. Segmentation and identification should therefore not rely on the visibility of certain vertebrae or a certain number of vertebrae. We propose an iterative instance segmentation approach that uses a fully convolutional neural network to segment and label vertebrae one after the other, independently of the number of visible vertebrae. This instance-by-instance segmentation is enabled by combining the network with a memory component that retains information about already segmented vertebrae. The network iteratively analyzes image patches, using information from both image and memory to search for the next vertebra. To efficiently traverse the image, we include the prior knowledge that the vertebrae are always located next to each other, which is used to follow the vertebral column. The network concurrently performs multiple tasks, which are segmentation of a vertebra, regression of its anatomical label and prediction whether the vertebra is completely visible in the image, which allows to exclude incompletely visible vertebrae from further analyses. The predicted anatomical labels of the individual vertebrae are additionally refined with a maximum likelihood approach, choosing the overall most likely labeling if all detected vertebrae are taken into account. This method was evaluated with five diverse datasets, including multiple modalities (CT and MR), various fields of view and coverages of different sections of the spine, and a particularly challenging set of low-dose chest CT scans. For vertebra segmentation, the average Dice score was 94.9 ± 2.1% with an average absolute symmetric surface distance of 0.2 ± 10.1mm. The anatomical identification had an accuracy of 93%, corresponding to a single case with mislabeled vertebrae. Vertebrae were classified as completely or incompletely visible with an accuracy of 97%. The proposed iterative segmentation method compares favorably with state-of-the-art methods and is fast, flexible and generalizable.

Journal ArticleDOI

[...]

TL;DR: The proposed Micro‐Net is aimed at better object localization in the face of varying intensities and is robust to noise, and compares the results on publicly available data sets and shows that the proposed network outperforms recent deep learning algorithms.
Abstract: Object segmentation and structure localization are important steps in automated image analysis pipelines for microscopy images. We present a convolution neural network (CNN) based deep learning architecture for segmentation of objects in microscopy images. The proposed network can be used to segment cells, nuclei and glands in fluorescence microscopy and histology images after slight tuning of input parameters. The network trains at multiple resolutions of the input image, connects the intermediate layers for better localization and context and generates the output using multi-resolution deconvolution filters. The extra convolutional layers which bypass the max-pooling operation allow the network to train for variable input intensities and object size and make it robust to noisy data. We compare our results on publicly available data sets and show that the proposed network outperforms recent deep learning algorithms.

Journal ArticleDOI

[...]

Xiaofeng Qi1, Lei Zhang1, Yao Chen1, Yong Pi1, Chen Yi1, Qing Lv1, Zhang Yi1 
TL;DR: An automated breast cancer diagnosis model for ultrasonography images using deep convolutional neural networks with multi‐scale kernels and skip connections is developed and achieves a performance comparable to human sonographers and can be applied to clinical scenarios.
Abstract: Ultrasonography images of breast mass aid in the detection and diagnosis of breast cancer. Manually analyzing ultrasonography images is time-consuming, exhausting and subjective. Automated analyzing such images is desired. In this study, we develop an automated breast cancer diagnosis model for ultrasonography images. Traditional methods of automated ultrasonography images analysis employ hand-crafted features to classify images, and lack robustness to the variation in the shapes, size and texture of breast lesions, leading to low sensitivity in clinical applications. To overcome these shortcomings, we propose a method to diagnose breast ultrasonography images using deep convolutional neural networks with multi-scale kernels and skip connections. Our method consists of two components: the first one is to determine whether there are malignant tumors in the image, and the second one is to recognize solid nodules. In order to let the two networks work in a collaborative way, a region enhance mechanism based on class activation maps is proposed. The mechanism helps to improve classification accuracy and sensitivity for both networks. A cross training algorithm is introduced to train the networks. We construct a large annotated dataset containing a total of 8145 breast ultrasonography images to train and evaluate the models. All of the annotations are proven by pathological records. The proposed method is compared with two state-of-the-art approaches, and outperforms both of them by a large margin. Experimental results show that our approach achieves a performance comparable to human sonographers and can be applied to clinical scenarios.

Journal ArticleDOI

[...]

TL;DR: The proposed algorithm is able to accurately and efficiently determine the direction and radius of coronary arteries based on information derived directly from the image data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.
Abstract: Coronary artery centerline extraction in cardiac CT angiography (CCTA) images is a prerequisite for evaluation of stenoses and atherosclerotic plaque. In this work, we propose an algorithm that extracts coronary artery centerlines in CCTA using a convolutional neural network (CNN). In the proposed method, a 3D dilated CNN is trained to predict the most likely direction and radius of an artery at any given point in a CCTA image based on a local image patch. Starting from a single seed point placed manually or automatically anywhere in a coronary artery, a tracker follows the vessel centerline in two directions using the predictions of the CNN. Tracking is terminated when no direction can be identified with high certainty. The CNN is trained using manually annotated centerlines in training images. No image preprocessing is required, so that the process is guided solely by the local image values around the tracker's location. The CNN was trained using a training set consisting of 8 CCTA images with a total of 32 manually annotated centerlines provided in the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08). Evaluation was performed within the CAT08 challenge using a test set consisting of 24 CCTA test images in which 96 centerlines were extracted. The extracted centerlines had an average overlap of 93.7% with manually annotated reference centerlines. Extracted centerline points were highly accurate, with an average distance of 0.21 mm to reference centerline points. Based on these results the method ranks third among 25 publicly evaluated methods in CAT08. In a second test set consisting of 50 CCTA scans acquired at our institution (UMCU), an expert placed 5448 markers in the coronary arteries, along with radius measurements. Each marker was used as a seed point to extract a single centerline, which was compared to the other markers placed by the expert. This showed strong correspondence between extracted centerlines and manually placed markers. In a third test set containing 36 CCTA scans from the MICCAI 2014 Challenge on Automatic Coronary Calcium Scoring (orCaScore), fully automatic seeding and centerline extraction was evaluated using a segment-wise analysis. This showed that the algorithm is able to fully-automatically extract on average 92% of clinically relevant coronary artery segments. Finally, the limits of agreement between reference and automatic artery radius measurements were found to be below the size of one voxel in both the CAT08 dataset and the UMCU dataset. Extraction of a centerline based on a single seed point required on average 0.4 ± 0.1 s and fully automatic coronary tree extraction required around 20 s. The proposed method is able to accurately and efficiently determine the direction and radius of coronary arteries based on information derived directly from the image data. The method can be trained with limited training data, and once trained allows fast automatic or interactive extraction of coronary artery trees from CCTA images.

Journal ArticleDOI

[...]

TL;DR: Two novel neural network architectures to detect pulmonary lesions in chest x‐rays imagesthat use visual attention mechanisms are proposed, designed to learn from a large number of weakly‐labelled images and a small number of annotated images.
Abstract: Machine learning approaches hold great potential for the automated detection of lung nodules on chest radiographs, but training algorithms requires very large amounts of manually annotated radiographs, which are difficult to obtain. The increasing availability of PACS (Picture Archiving and Communication System), is laying the technological foundations needed to make available large volumes of clinical data and images from hospital archives. Binary labels indicating whether a radiograph contains a pulmonary lesion can be extracted at scale, using natural language processing algorithms. In this study, we propose two novel neural networks for the detection of chest radiographs containing pulmonary lesions. Both architectures make use of a large number of weakly-labelled images combined with a smaller number of manually annotated x-rays. The annotated lesions are used during training to deliver a type of visual attention feedback informing the networks about their lesion localisation performance. The first architecture extracts saliency maps from high-level convolutional layers and compares the inferred position of a lesion against the true position when this information is available; a localisation error is then back-propagated along with the softmax classification error. The second approach consists of a recurrent attention model that learns to observe a short sequence of smaller image portions through reinforcement learning; the reward function penalises the exploration of areas, within an image, that are unlikely to contain nodules. Using a repository of over 430,000 historical chest radiographs, we present and discuss the proposed methods over related architectures that use either weakly-labelled or annotated images only.

Journal ArticleDOI

[...]

TL;DR: Spatial Decomposition Network (SDNet) is proposed, which factorises 2D medical images into spatial anatomical factors and non-spatial modality factors and is ideally suited for several medical image analysis tasks, such as semi-supervised segmentation, multi-task segmentation and regression, and image-to-image synthesis.
Abstract: Typically, a medical image offers spatial information on the anatomy (and pathology) modulated by imaging specific characteristics Many imaging modalities including Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) can be interpreted in this way We can venture further and consider that a medical image naturally factors into some spatial factors depicting anatomy and factors that denote the imaging characteristics Here, we explicitly learn this decomposed (disentangled) representation of imaging data, focusing in particular on cardiac images We propose Spatial Decomposition Network (SDNet), which factorises 2D medical images into spatial anatomical factors and non-spatial modality factors We demonstrate that this high-level representation is ideally suited for several medical image analysis tasks, such as semi-supervised segmentation, multi-task segmentation and regression, and image-to-image synthesis Specifically, we show that our model can match the performance of fully supervised segmentation models, using only a fraction of the labelled images Critically, we show that our factorised representation also benefits from supervision obtained either when we use auxiliary tasks to train the model in a multi-task setting (eg regressing to known cardiac indices), or when aggregating multimodal data from different sources (eg pooling together MRI and CT data) To explore the properties of the learned factorisation, we perform latent-space arithmetic and show that we can synthesise CT from MR and vice versa, by swapping the modality factors We also demonstrate that the factor holding image specific information can be used to predict the input modality with high accuracy Code will be made available at https://githubcom/agis85/anatomy_modality_decomposition

Journal ArticleDOI

[...]

TL;DR: An automatic and accurate system for detecting mitosis in histopathology images using a deep segmentation network to produce segmentation map and a novel concentric loss function is proposed to train the semantic segmentsation network on weakly supervised mitosis data.
Abstract: Developing new deep learning methods for medical image analysis is a prevalent research topic in machine learning. In this paper, we propose a deep learning scheme with a novel loss function for weakly supervised breast cancer diagnosis. According to the Nottingham Grading System, mitotic count plays an important role in breast cancer diagnosis and grading. To determine the cancer grade, pathologists usually need to manually count mitosis from a great deal of histopathology images, which is a very tedious and time-consuming task. This paper proposes an automatic method for detecting mitosis. We regard the mitosis detection task as a semantic segmentation problem and use a deep fully convolutional network to address it. Different from conventional training data used in semantic segmentation system, the training label of mitosis data is usually in the format of centroid pixel, rather than all the pixels belonging to a mitosis. The centroid label is a kind of weak label, which is much easier to annotate and can save the effort of pathologists a lot. However, technically this weak label is not sufficient for training a mitosis segmentation model. To tackle this problem, we expand the single-pixel label to a novel label with concentric circles, where the inside circle is a mitotic region and the ring around the inside circle is a "middle ground". During the training stage, we do not compute the loss of the ring region because it may have the presence of both mitotic and non-mitotic pixels. This new loss termed as "concentric loss" is able to make the semantic segmentation network be trained with the weakly annotated mitosis data. On the generated segmentation map from the segmentation model, we filter out low confidence and obtain mitotic cells. On the challenging ICPR 2014 MITOSIS dataset and AMIDA13 dataset, we achieve a 0.562 F-score and 0.673 F-score respectively, outperforming all previous approaches significantly. On the latest TUPAC16 dataset, we obtain a F-score of 0.669, which is also the state-of-the-art result. The excellent results quantitatively demonstrate the effectiveness of the proposed mitosis segmentation network with the concentric loss. All of our code has been made publicly available at https://github.com/ChaoLi977/SegMitos_mitosis_detection.

Journal ArticleDOI

[...]

TL;DR: In this paper, a graph neural network was incorporated into a unified CNN architecture to exploit both local appearances and global vessel structures for vessel segmentation, and the proposed method outperformed or is on par with current state-of-theart methods in terms of the average precision and the area under the receiver operating characteristic curve.
Abstract: We propose a novel deep learning based system for vessel segmentation. Existing methods using CNNs have mostly relied on local appearances learned on the regular image grid, without consideration of the graphical structure of vessel shape. Effective use of the strong relationship that exists between vessel neighborhoods can help improve the vessel segmentation accuracy. To this end, we incorporate a graph neural network into a unified CNN architecture to jointly exploit both local appearances and global vessel structures. We extensively perform comparative evaluations on four retinal image datasets and a coronary artery X-ray angiography dataset, showing that the proposed method outperforms or is on par with current state-of-the-art methods in terms of the average precision and the area under the receiver operating characteristic curve. Statistical significance on the performance difference between the proposed method and each comparable method is suggested by conducting a paired t-test. In addition, ablation studies support the particular choices of algorithmic detail and hyperparameter values of the proposed method. The proposed architecture is widely applicable since it can be applied to expand any type of CNN-based vessel segmentation method to enhance the performance.

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors proposed a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs), which can distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei.
Abstract: Tumor segmentation in whole-slide images of histology slides is an important step towards computer-assisted diagnosis. In this work, we propose a tumor segmentation framework based on the novel concept of persistent homology profiles (PHPs). For a given image patch, the homology profiles are derived by efficient computation of persistent homology, which is an algebraic tool from homology theory. We propose an efficient way of computing topological persistence of an image, alternative to simplicial homology. The PHPs are devised to distinguish tumor regions from their normal counterparts by modeling the atypical characteristics of tumor nuclei. We propose two variants of our method for tumor segmentation: one that targets speed without compromising accuracy and the other that targets higher accuracy. The fast version is based on a selection of exemplar image patches from a convolution neural network (CNN) and patch classification by quantifying the divergence between the PHPs of exemplars and the input image patch. Detailed comparative evaluation shows that the proposed algorithm is significantly faster than competing algorithms while achieving comparable results. The accurate version combines the PHPs and high-level CNN features and employs a multi-stage ensemble strategy for image patch labeling. Experimental results demonstrate that the combination of PHPs and CNN features outperform competing algorithms. This study is performed on two independently collected colorectal datasets containing adenoma, adenocarcinoma, signet, and healthy cases. Collectively, the accurate tumor segmentation produces the highest average patch-level F1-score, as compared with competing algorithms, on malignant and healthy cases from both the datasets. Overall the proposed framework highlights the utility of persistent homology for histopathology image analysis.