scispace - formally typeset
Search or ask a question
Author

Zheng Yang

Bio: Zheng Yang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Wireless sensor network & Computer science. The author has an hindex of 52, co-authored 185 publications receiving 9605 citations. Previous affiliations of Zheng Yang include University of New South Wales & Hong Kong University of Science and Technology.


Papers
More filters
Proceedings ArticleDOI
22 Aug 2012
TL;DR: Novel sensors integrated in modern mobile phones are investigated and leveraged to construct the radio map of a floor plan, which was previously obtained only by site survey, and LiFS, an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones is designed.
Abstract: Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past decades. Most radio-based solutions require a process of site survey, in which radio signatures of an interested area are annotated with their real recorded locations. Site survey involves intensive costs on manpower and time, limiting the applicable buildings of wireless localization worldwide. In this study, we investigate novel sensors integrated in modern mobile phones and leverage user motions to construct the radio map of a floor plan, which is previously obtained only by site survey. On this basis, we design LiFS, an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones. LiFS is deployed in an office building covering over 1600m2, and its deployment is easy and rapid since little human intervention is needed. In LiFS, the calibration of fingerprints is crowdsourced and automatic. Experiment results show that LiFS achieves comparable location accuracy to previous approaches even without site survey.

756 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the channel state information (CSI) in 802.11 a/g/n and highlight the differences between CSI and RSSI with respect to network layering, time resolution, frequency resolution, stability, and accessibility.
Abstract: The spatial features of emitted wireless signals are the basis of location distinction and determination for wireless indoor localization. Available in mainstream wireless signal measurements, the Received Signal Strength Indicator (RSSI) has been adopted in vast indoor localization systems. However, it suffers from dramatic performance degradation in complex situations due to multipath fading and temporal dynamics.Break-through techniques resort to finer-grained wireless channel measurement than RSSI. Different from RSSI, the PHY layer power feature, channel response, is able to discriminate multipath characteristics, and thus holds the potential for the convergence of accurate and pervasive indoor localization. Channel State Information (CSI, reflecting channel response in 802.11 a/g/n) has attracted many research efforts and some pioneer works have demonstrated submeter or even centimeter-level accuracy. In this article, we survey this new trend of channel response in localization. The differences between CSI and RSSI are highlighted with respect to network layering, time resolution, frequency resolution, stability, and accessibility. Furthermore, we investigate a large body of recent works and classify them overall into three categories according to how to use CSI. For each category, we emphasize the basic principles and address future directions of research in this new and largely open area.

704 citations

Journal ArticleDOI
TL;DR: Diverse strategies that are proposed in the literature to provide incentives for stimulating users to participate in mobile crowd sensing applications are surveyed and divided into three categories: entertainment, service, and money.
Abstract: Recent years have witnessed the fast proliferation of mobile devices (e.g., smartphones and wearable devices) in people's lives. In addition, these devices possess powerful computation and communication capabilities and are equipped with various built-in functional sensors. The large quantity and advanced functionalities of mobile devices have created a new interface between human beings and environments. Many mobile crowd sensing applications have thus been designed which recruit normal users to contribute their resources for sensing tasks. To guarantee good performance of such applications, it's essential to recruit sufficient participants. Thus, how to effectively and efficiently motivate normal users draws growing attention in the research community. This paper surveys diverse strategies that are proposed in the literature to provide incentives for stimulating users to participate in mobile crowd sensing applications. The incentives are divided into three categories: entertainment, service, and money. Entertainment means that sensing tasks are turned into playable games to attract participants. Incentives of service exchanging are inspired by the principle of mutual benefits. Monetary incentives give participants payments for their contributions. We describe literature works of each type comprehensively and summarize them in a compact form. Further challenges and promising future directions concerning incentive mechanism design are also discussed.

441 citations

Journal ArticleDOI
TL;DR: This work designs WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones and shows that WILL achieves competitive performance comparing with traditional approaches.
Abstract: Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past two decades. Most radio-based solutions require a process of site survey, in which radio signatures are collected and stored for further comparison and matching. Site survey involves intensive costs on manpower and time. In this work, we study unexploited RF signal characteristics and leverage user motions to construct radio floor plan that is previously obtained by site survey. On this basis, we design WILL, an indoor localization approach based on off-the-shelf WiFi infrastructure and mobile phones. WILL is deployed in a real building covering over 1600 m2, and its deployment is easy and rapid since site survey is no longer needed. The experiment results show that WILL achieves competitive performance comparing with traditional approaches.

421 citations

Journal ArticleDOI
TL;DR: Novel sensors integrated in modern mobile phones are investigated and leverage user motions to construct the radio map of a floor plan, which is previously obtained only by site survey, and LiFS, an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones is designed.
Abstract: Indoor localization is of great importance for a range of pervasive applications, attracting many research efforts in the past decades. Most radio-based solutions require a process of site survey, in which radio signatures of an interested area are annotated with their real recorded locations. Site survey involves intensive costs on manpower and time, limiting the applicable buildings of wireless localization worldwide. In this study, we investigate novel sensors integrated in modern mobile phones and leverage user motions to construct the radio map of a floor plan, which is previously obtained only by site survey. Considering user movements in a building, originally separated RSS fingerprints are geographically connected by user moving paths of locations where they are recorded, and they consequently form a high dimension fingerprint space, in which the distances among fingerprints are preserved. The fingerprint space is then automatically mapped to the floor plan in a stress-free form, which results in fingerprints labeled with physical locations. On this basis, we design LiFS, an indoor localization system based on off-the-shelf WiFi infrastructure and mobile phones. LiFS is deployed in an office building covering over 1,600 m $^2$ , and its deployment is easy and rapid since little human intervention is needed. In LiFS, the calibration of fingerprints is crowdsourced and automatic. Experiment results show that LiFS achieves comparable location accuracy to previous approaches even without site survey.

357 citations


Cited by
More filters
Journal ArticleDOI
01 May 1981
TL;DR: This chapter discusses Detecting Influential Observations and Outliers, a method for assessing Collinearity, and its applications in medicine and science.
Abstract: 1. Introduction and Overview. 2. Detecting Influential Observations and Outliers. 3. Detecting and Assessing Collinearity. 4. Applications and Remedies. 5. Research Issues and Directions for Extensions. Bibliography. Author Index. Subject Index.

4,948 citations

01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI
TL;DR: An in depth review of rare event detection from an imbalanced learning perspective and a comprehensive taxonomy of the existing application domains of im balanced learning are provided.
Abstract: 527 articles related to imbalanced data and rare events are reviewed.Viewing reviewed papers from both technical and practical perspectives.Summarizing existing methods and corresponding statistics by a new taxonomy idea.Categorizing 162 application papers into 13 domains and giving introduction.Some opening questions are discussed at the end of this manuscript. Rare events, especially those that could potentially negatively impact society, often require humans decision-making responses. Detecting rare events can be viewed as a prediction task in data mining and machine learning communities. As these events are rarely observed in daily life, the prediction task suffers from a lack of balanced data. In this paper, we provide an in depth review of rare event detection from an imbalanced learning perspective. Five hundred and seventeen related papers that have been published in the past decade were collected for the study. The initial statistics suggested that rare events detection and imbalanced learning are concerned across a wide range of research areas from management science to engineering. We reviewed all collected papers from both a technical and a practical point of view. Modeling methods discussed include techniques such as data preprocessing, classification algorithms and model evaluation. For applications, we first provide a comprehensive taxonomy of the existing application domains of imbalanced learning, and then we detail the applications for each category. Finally, some suggestions from the reviewed papers are incorporated with our experiences and judgments to offer further research directions for the imbalanced learning and rare event detection fields.

1,448 citations

Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations

Proceedings ArticleDOI
17 Aug 2015
TL;DR: SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems.
Abstract: This paper presents the design and implementation of SpotFi, an accurate indoor localization system that can be deployed on commodity WiFi infrastructure. SpotFi only uses information that is already exposed by WiFi chips and does not require any hardware or firmware changes, yet achieves the same accuracy as state-of-the-art localization systems. SpotFi makes two key technical contributions. First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle of arrival (AoA) of multipath components even when the access point (AP) has only three antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA of direct path between the localization target and AP by assigning values for each path depending on how likely the particular path is the direct path. Our experiments in a multipath rich indoor environment show that SpotFi achieves a median accuracy of 40 cm and is robust to indoor hindrances such as obstacles and multipath.

1,159 citations