scispace - formally typeset
Search or ask a question
Institution

Spectral Sciences Incorporated

CompanyBurlington, Massachusetts, United States
About: Spectral Sciences Incorporated is a company organization based out in Burlington, Massachusetts, United States. It is known for research contribution in the topics: Hyperspectral imaging & Radiance. The organization has 114 authors who have published 342 publications receiving 10875 citations.


Papers
More filters
Proceedings ArticleDOI
12 Aug 2004
TL;DR: In this paper, a convex cone model is used to represent vector data and an end-members extraction method is proposed to find the endmembers from the hyperspectral data set.
Abstract: A new endmember extraction method has been developed that is based on a convex cone model for representing vector data. The endmembers are selected directly from the data set. The algorithm for finding the endmembers is sequential: the convex cone model starts with a single endmember and increases incrementally in dimension. Abundance maps are simultaneously generated and updated at each step. A new endmember is identified based on the angle it makes with the existing cone. The data vector making the maximum angle with the existing cone is chosen as the next endmember to add to enlarge the endmember set. The algorithm updates the abundances of previous endmembers and ensures that the abundances of previous and current endmembers remain positive or zero. The algorithm terminates when all of the data vectors are within the convex cone, to some tolerance. The method offers advantages for hyperspectral data sets where high correlation among channels and pixels can impair un-mixing by standard techniques. The method can also be applied as a band-selection tool, finding end-images that are unique and forming a convex cone for modeling the remaining hyperspectral channels. The method is described and applied to hyperspectral data sets.

268 citations

Proceedings ArticleDOI
TL;DR: The MODTRAN5(1a, in press) radiation transport (RT) model is a major advancement over earlier versions of the MODTRan(tm) atmospheric transmittance and radiance model.
Abstract: The MODTRAN5(1a, in press) radiation transport (RT) model is a major advancement over earlier versions of the MODTRAN(tm) atmospheric transmittance and radiance model. New model features include (1) finer spectral resolution via the Spectrally Enhanced Resolution MODTRAN(tm) (SERTRAN) molecular band model, (2) a fully coupled treatment of auxiliary molecular species, and (3) a rapid, high fidelity multiple scattering (MS) option. The finer spectral resolution improves model accuracy especially in the mid- and long-wave infrared atmospheric windows; the auxiliary species option permits the addition of any or all of the suite of HITRAN molecular line species, along with default and user-defined profile specification; and the MS option makes feasible the calculation of Vis-NIR databases that include high-fidelity scattered radiances.

258 citations

Proceedings ArticleDOI
TL;DR: TheMODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model and includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
Abstract: The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.

256 citations

Proceedings ArticleDOI
08 May 2006
TL;DR: The MODTRan5 radiation transport (RT) model is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model and validations of the new band model algorithms against line-by-line (LBL) codes have proven successful.
Abstract: The MODTRAN5 radiation transport (RT) model is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. New model features include (1) finer spectral resolution via the Spectrally Enhanced Resolution MODTRAN (SERTRAN) molecular band model, (2) a fully coupled treatment of auxiliary molecular species, and (3) a rapid, high fidelity multiple scattering (MS) option. The finer spectral resolution improves model accuracy especially in the mid- and long-wave infrared atmospheric windows; the auxiliary species option permits the addition of any or all of the suite of HITRAN molecular line species, along with default and user-defined profile specification; and the MS option makes feasible the calculation of Vis-NIR databases that include high-fidelity scattered radiances. Validations of the new band model algorithms against line-by-line (LBL) codes have proven successful.

250 citations

Proceedings ArticleDOI
23 Aug 2000
TL;DR: In this paper, the authors present an overview of the latest version of a MODTRAN4-based atmospheric correction algorithm developed by Spectral Sciences, Inc. and the Air Force Research Laboratory for spectral imaging sensors.
Abstract: This paper presents an overview of the latest version of a MODTRAN4-based atmospheric correction (or "compensation") algorithm developed by Spectral Sciences, Inc. and the Air Force Research Laboratory for spectral imaging sensors. New upgrades to the algorithm include automated aerosol retrieval, cloud masking, and speed improvements. In addition, MODTRAN4 has been updated to correct recently discovered errors in the HITRAN-96 water line parameters. Reflectance spectra retrieved from AVIRIS data are compared with "ground truth" measurements, and good agreement is found.

232 citations


Authors

Showing all 115 results

Network Information
Related Institutions (5)
Goddard Space Flight Center
63.3K papers, 2.7M citations

88% related

German Aerospace Center
26.7K papers, 553.3K citations

84% related

United States Naval Research Laboratory
45.4K papers, 1.5M citations

83% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

81% related

Ames Research Center
35.8K papers, 1.3M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
20215
202011
201910
201814
201716