scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Entomology in 2003"


Journal ArticleDOI
TL;DR: Wolbachia biology is reviewed, including their phylogeny and distribution, mechanisms of action, population biology and evolution, and biological control implications.
Abstract: ▪ Abstract Wolbachia are a common and widespread group of bacteria found in reproductive tissues of arthropods. These bacteria are transmitted through the cytoplasm of eggs and have evolved various mechanisms for manipulating reproduction of their hosts, including induction of reproductive incompatibility, pathenogenesis, and feminization. Wolbachia are also transmitted horizontally between arthropod species. Significant recent advances have been made in the study of these interesting microorganisms. In this paper, Wolbachia biology is reviewed, including their phylogeny and distribution, mechanisms of action, population biology and evolution, and biological control implications. Potential directions for future research are also discussed.

1,508 citations


Journal ArticleDOI
TL;DR: A review of manipulative field studies showed that in approximately 75% of cases, generalist predators, whether single species or species assemblages, reduced pest numbers significantly and needed to find ways of disentangling the factors influencing positive and negative interactions within natural enemy communities in order to optimize beneficial synergies leading to pest control.
Abstract: Theoretical developments are helping us to comprehend the basic parameters governing the dynamics of the interactions between generalist predators and their many pest and nonpest prey. In practice, however, inter- and intraspecific interactions between generalist predators, and between the predators and their prey, within multispecies systems under the influence of rapidly changing biotic and abiotic variables are difficult to predict. We discuss trade-offs between the relative merits of specialists and generalists that allow both to be effective, and often complementary, under different circumstances. A review of manipulative field studies showed that in approximately 75% of cases, generalist predators, whether single species or species assemblages, reduced pest numbers significantly. Techniques for manipulating predator numbers to enhance pest control at different scales are discussed. We now need to find ways of disentangling the factors influencing positive and negative interactions within natural enemy communities in order to optimize beneficial synergies leading to pest control.

1,368 citations


Journal ArticleDOI
TL;DR: A comparison of insect diapause with other forms of dormancy in plants and animals suggests that upregulation of a subset of heat shock protein genes may be one feature common to different types of dormancies.
Abstract: Environmental and hormonal regulators of diapause have been reasonably well defined, but our understanding of the molecular regulation of diapause remains in its infancy. Though many genes are shut down during diapause, others are specifically expressed at this time. Classes of diapause-upregulated genes can be distinguished based on their expression patterns: Some are upregulated throughout diapause, and others are expressed only in early diapause, late diapause, or intermittently throughout diapause. The termination of diapause is accompanied by a rapid decline in expression of the diapause-upregulated genes and, conversely, an elevation in expression of many genes that were downregulated during diapause. A comparison of insect diapause with other forms of dormancy in plants and animals suggests that upregulation of a subset of heat shock protein genes may be one feature common to different types of dormancies.

1,052 citations


Journal ArticleDOI
TL;DR: Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
Abstract: ■ Abstract Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped (“magic” nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides. CONTENTS

823 citations


Journal ArticleDOI
TL;DR: Secretions of male accessory glands contain a variety of bioactive molecules that exert wide-ranging effects on female reproductive activity and they improve the male's chances of siring a significant proportion of the female's offspring.
Abstract: Secretions of male accessory glands contain a variety of bioactive molecules. When transferred during mating, these molecules exert wide-ranging effects on female reproductive activity and they improve the male's chances of siring a significant proportion of the female's offspring. The accessory gland secretions may affect virtually all aspects of the female's reproductive activity. The secretions may render her unwilling or unable to remate for some time, facilitating sperm storage and ensuring that any eggs laid will be fertilized by that male's sperm. They may stimulate an increase in the number and rate of development of eggs and modulate ovulation and/or oviposition. Antimicrobial agents in the secretions ensure that the female reproductive tract is a hospitable environment during sperm transfer. In a few species the secretions include noxious chemicals. These are sequestered by developing eggs that are thereby protected from predators and pathogens when laid.

745 citations


Journal ArticleDOI
TL;DR: This review addresses the problems insects and ticks face to feed on blood and the solutions these invertebrates engender to overcome these obstacles, including a sophisticated salivary cocktail of potent pharmacologic compounds.
Abstract: This review addresses the problems insects and ticks face to feed on blood and the solutions these invertebrates engender to overcome these obstacles, including a sophisticated salivary cocktail of potent pharmacologic compounds. Recent advances in transcriptome and proteome research allow an unprecedented insight into the complexity of these compounds, indicating that their molecular diversity as well as the diversity of their targets is still larger than previously thought.

686 citations


Journal ArticleDOI
TL;DR: It is argued that to advance the knowledge of toxicant impacts on arthropods, the population growth rate approach should be widely adopted.
Abstract: New developments in ecotoxicology are changing the way pesticides and other toxicants are evaluated. An emphasis on life histories and population fitness through the use of demography, other measures of population growth rate, field studies, and modeling are being exploited to derive better estimates of pesticide impacts on both target and nontarget species than traditional lethal dose estimates. We review the state of the art in demographic toxicology, an approach to the evaluation of toxicity that uses life history parameters and other measures of population growth rate. A review of the literature revealed that 75 studies on the use of demography and similar measures of population growth rate in toxicology have been published since 1962. Of these 75 studies, the majority involved arthropods. Recent evaluations have indicated that ecotoxicological analysis based on population growth rate results in more accurate assessments of the impacts of pesticides and other toxicants because measures of population growth rate combine lethal and sublethal effects, which lethal dose/concentration estimates (LD/LC50) cannot do. We contend that to advance our knowledge of toxicant impacts on arthropods, the population growth rate approach should be widely adopted.

643 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed 10 projects with quantitative data on nontarget effects and found that relatives of the pest are most likely to be attacked; host-specificity testing defines physiological host range, but not ecological range; prediction of ecological consequences requires population data; the level of impact varied, often in relation to environmental conditions; information on magnitude of nontarget impact is sparse; attack on rare native species can accelerate their decline; and no evidence on adaptation is available.
Abstract: Controversy exists over ecological risks in classical biological control. We reviewed 10 projects with quantitative data on nontarget effects. Ten patterns emerged: (a) Relatives of the pest are most likely to be attacked; (b) host-specificity testing defines physiological host range, but not ecological range; (c) prediction of ecological consequences requires population data; (d) level of impact varied, often in relation to environmental conditions; (e) information on magnitude of nontarget impact is sparse; (f) attack on rare native species can accelerate their decline; (g) nontarget effects can be indirect; (h) agents disperse from agroecosystems; (i) whole assemblages of species can be perturbed; and (j) no evidence on adaptation is available in these cases. The review leads to six recommendations: Avoid using generalists or adventive species; expand host-specificity testing; incorporate more ecological information; consider ecological risk in target selection; prioritize agents; and pursue genetic data on adaptation. We conclude that retrospective analyses suggest clear ways to further increase future safety of biocontrol.

582 citations


Journal ArticleDOI
TL;DR: Comparative analysis of the complete genome sequences of 13 baculoviruses revealed a core set of 30 genes, 20 of which have known functions, which provided evidence for two putative DNA repair systems and for viral proteins specific for infection of lymantrid hosts.
Abstract: Comparative analysis of the complete genome sequences of 13 baculoviruses revealed a core set of 30 genes, 20 of which have known functions. Phylogenetic analyses of these 30 genes yielded a tree with 4 major groups: the genus Granulovirus (GVs), the group I and II lepidopteran nucleopolyhedroviruses (NPVs), and the dipteran NPV, CuniNPV. These major divisions within the family Baculoviridae were also supported by phylogenies based on gene content and gene order. Gene content mapping has revealed the patterns of gene acquisitions and losses that have taken place during baculovirus evolution, and it has highlighted the fluid nature of baculovirus genomes. The identification of shared protein phylogenetic profiles provided evidence for two putative DNA repair systems and for viral proteins specific for infection of lymantrid hosts. Examination of gene order conservation revealed a core gene cluster of four genes, helicase, lef-5, ac96, and 38K(ac98), whose relative positions are conserved in all baculovirus genomes.

443 citations


Journal ArticleDOI
TL;DR: Until the 1990s, Amblyomma americanum was regarded primarily as a nuisance species, but a tick of minor importance as a vector of zoonotic pathogens affecting humans, but with the recent discoveries of Ehrlichia chaffeensis, EHRlichia ewingii, and "Borrelia lonestari, the public health relevance of lone star ticks is no longer in question.
Abstract: ▪ Abstract Until the 1990s, Amblyomma americanum was regarded primarily as a nuisance species, but a tick of minor importance as a vector of zoonotic pathogens affecting humans. With the recent discoveries of Ehrlichia chaffeensis, Ehrlichia ewingii, and “Borrelia lonestari,” the public health relevance of lone star ticks is no longer in question. During the next 25 years, the number of cases of human disease caused by A. americanum-associated pathogens will probably increase. Based on current trajectories and historic precedents, the increase will be primarily driven by biological and environmental factors that alter the geographic distribution and intensity of transmission of zoonotic pathogens. Sociologic and demographic changes that influence the likelihood of highly susceptible humans coming into contact with infected lone star ticks, in addition to advances in diagnostic capabilities and national surveillance efforts, will also contribute to the anticipated increase in the number of recognized cases...

426 citations


Journal ArticleDOI
TL;DR: It is suggested that competitive displacement has the potential to be a widespread phenomenon, and the frequency of these displacement events may increase, given the ever-increasing degree of anthropogenic changes to the environment.
Abstract: Competitive displacement is the most severe outcome of interspecific competition. For the purposes of this review, we define this type of displacement as the removal of a formerly established species from a habitat as a result of direct or indirect competitive interactions with another species. We reviewed the literature for recent putative cases of competitive displacement among insects and arachnids and assessed the evidence for the role of interspecific competition in these displacements. We found evidence for mechanisms of both exploitation and interference competition operating in these cases of competitive displacement. Many of the cases that we identified involve the operation of more than one competitive mechanism, and many cases were mediated by other noncompetitive factors. Most, but not all, of these displacements occurred between closely related species. In the majority of cases, exotic species displaced native species or previously established exotic species, often in anthropogenically-altered habitats. The cases that we identified have occurred across a broad range of taxa and environments. Therefore we suggest that competitive displacement has the potential to be a widespread phenomenon, and the frequency of these displacement events may increase, given the ever-increasing degree of anthropogenic changes to the environment. A greater awareness of competitive displacement events should lead to more studies documenting the relative importance of key factors and developing hypotheses that explain observed patterns.

Journal ArticleDOI
TL;DR: Although epizootic VEEV strains are opportunistic in their use of mosquito vectors, the most widespread outbreaks appear to involve specific adaptation to Ochlerotatus taeniorhynchus, themost common vector in many coastal areas.
Abstract: Venezuelan equine encephalitis virus (VEEV) remains a naturally emerging disease threat as well as a highly developed biological weapon. Recently, progress has been made in understanding the complex ecological and viral genetic mechanisms that coincide in time and space to generate outbreaks. Enzootic, equine avirulent, serotype ID VEEV strains appear to alter their serotype to IAB or IC, and their vertebrate and mosquito host range, to mediate repeated VEE emergence via mutations in the E2 envelope glycoprotein that represent convergent evolution. Adaptation to equines results in highly efficient amplification, which results in human disease. Although epizootic VEEV strains are opportunistic in their use of mosquito vectors, the most widespread outbreaks appear to involve specific adaptation to Ochlerotatus taeniorhynchus, the most common vector in many coastal areas. In contrast, enzootic VEEV strains are highly specialized and appear to utilize vectors exclusively in the Spissipes section of the Culex (Melanoconion) subgenus.

Journal ArticleDOI
TL;DR: Insect-plant interactions involving the cultivated tomato and its relatives in the genus Lycopersicon have been intensively studied for several decades, resulting in one of the best documented and in-depth examples of the mechanistic complexities of insect- plant interactions.
Abstract: ▪ Abstract Insect-plant interactions involving the cultivated tomato and its relatives in the genus Lycopersicon have been intensively studied for several decades, resulting in one of the best documented and in-depth examples of the mechanistic complexities of insect-plant interactions, which encompass both herbivores and their natural enemies. Trichome-mediated defenses are particularly significant in L. hirsutum f. glabratum and have been extensively implicated in negative tritrophic effects mediated by direct contact of parasitoids and predators with trichomes, as well as indirect effects mediated through their hosts or prey. Both constitutive and inducible defense traits of L. esculentum exert effects on selected parasitoids and predators. The effects of any particular plant defense trait on parasitoids and predators depend on the specific attributes of the plant trait and the details of the physical, biochemical, and behavioral interaction between the natural enemy, its host (prey), and the plant.

Journal ArticleDOI
TL;DR: In later successional habitats, root feeders appear to be the more potent force in driving plant performance and plant community composition and their importance in natural areas, particularly in the tropics.
Abstract: Investigations of plant-herbivore interactions continue to be popular; however, a bias neglecting root feeders may limit our ability to understand how herbivores shape plant life histories. Root feeders can cause dramatic plant population declines, often associated with secondary stress factors such as drought or grazing. These severe impacts resulted in substantial interest in root feeders as agricultural pests and increasingly as biological weed control agents, particularly in North America. Despite logistical difficulties, establishment rates in biocontrol programs are equal or exceed those of aboveground herbivores (67.2% for aboveground herbivores, 77.5% for belowground herbivores) and root feeders are more likely to contribute to control (53.7% versus 33.6%). Models predicting root feeders would be negatively affected by competitively superior aboveground herbivores may be limited to early successional habitats or generalist root feeders attacking annual plants. In later successional habitats, root feeders become more abundant and appear to be the more potent force in driving plant performance and plant community composition. Aboveground herbivores, even at high population levels, were unable to prevent buildup of root herbivore populations and the resulting population collapse of their host plants. Significant information gaps exist about the impact of root feeders on plant physiology and secondary chemistry and their importance in natural areas, particularly in the tropics.

Journal ArticleDOI
TL;DR: In grasshoppers, it probably governs food selection and the amounts eaten, but in caterpillars there is some evidence that central feedbacks are also involved in regulating the amount eaten.
Abstract: Gustatory receptors associated with feeding in phytophagous insects are broadly categorized as phagostimulatory or deterrent. No phytophagous insect is known that tastes all its essential nutrients, and the ability to discriminate between nutrients is limited. The insects acquire a nutritional balance largely "adventitiously" because leaves have an appropriate chemical composition. Sugars are the most important phagostimulants. Plant secondary compounds are most often deterrent but stimulate phagostimulatory cells if they serve as host-indicating sign stimuli, or if they are sequestered for defense or used as pheromone precursors. The stimulating effects of chemicals are greatly affected by other chemicals in mixtures like those to which the sensilla are normally exposed. Host plant selection depends on the balance of phagostimulatory and deterrent inputs with, in some oligophagous and monophagous species, a dominating role of a host-related chemical. Evolution of phytophagy has probably involved a change in emphasis in the gustatory system, not fundamentally new developments. The precise role of the gustatory systems remains unclear. In grasshoppers, it probably governs food selection and the amounts eaten, but in caterpillars there is some evidence that central feedbacks are also involved in regulating the amount eaten.

Journal ArticleDOI
TL;DR: A classification of the genetic systems of insects and the number of evolutionary transitions between them is presented and available evidence tends to support W.D. Hamilton's hypothesis that maternally transmitted endosymbionts have been involved in the origins of haplodiploidy.
Abstract: There are three major classes of insect genetic systems: those with diploid males (diplodiploidy), those with effectively haploid males (haplodiploidy), and those without males (thelytoky). Mixed systems, involving cyclic or facultative switching between thelytoky and either of the other systems, also occur. I present a classification of the genetic systems of insects and estimate the number of evolutionary transitions between them that have occurred. Obligate thelytoky has arisen from each of the other systems, and there is evidence that over 900 such origins have occurred. The number of origins of facultative thelytoky and the number of reversions from obligate thelytoky to facultative and cyclic thelytoky are difficult to estimate. The other transitions are few in number: five origins of cyclic thelytoky, eight origins of obligate haplodiploidy (including paternal genome elimination), the strange case of Micromalthus, and the two reversions from haplodiploidy to diplodiploidy in scale insects. Available evidence tends to support W.D. Hamilton's hypothesis that maternally transmitted endosymbionts have been involved in the origins of haplodiploidy. Bizarre systems of extrazygotic inheritance in Sternorrhyncha are not easily accommodated into any existing classification of genetic systems.

Journal ArticleDOI
Hilary Hurd1
TL;DR: This review examines empirical, experimental, and field-based evidence to evaluate examples of changes in vector behavior and physiology that might be construed to be manipulative.
Abstract: Many of the most harmful parasitic diseases are transmitted by blood-feeding insect vectors. During this stage of their life cycles, selection pressures favor parasites that can manipulate their vectors to enhance transmission. Strategies may include increasing the amount of contact between vector and host, reducing vector reproductive output and consequently altering vector resource management to increase available nutrient reserves, and increasing vector longevity. Manipulation of these life-history traits may be more beneficial at some phase of the parasite's developmental process than at others. This review examines empirical, experimental, and field-based evidence to evaluate examples of changes in vector behavior and physiology that might be construed to be manipulative. Examples are mainly drawn from malaria-infected mosquitoes, Leishmania-infected sandflies, and Trypanosoma-infected tsetse flies.

Journal ArticleDOI
TL;DR: Insects have evolved distinctive forms of the serum iron transport protein, transferrin, and the storage protein, ferritin, which may serve different functions in insects than they do in other organisms.
Abstract: Like other organisms, insects must balance two properties of ionic iron, that of an essential nutrient and a potent toxin. Iron must be acquired to provide catalysis for oxidative metabolism, but it must be controlled to avoid destructive oxidative reactions. Insects have evolved distinctive forms of the serum iron transport protein, transferrin, and the storage protein, ferritin. These proteins may serve different functions in insects than they do in other organisms. A form of translational control of protein synthesis by iron in insects is similar to that of vertebrates. The Drosophila melanogaster genome contains many genes that may encode other proteins involved in iron metabolism.

Journal ArticleDOI
TL;DR: Vibratory signals of plant-dwelling insects, such as land bugs of the families Cydnidae and Pentatomidae, are produced mainly by stridulation and/or vibration of some body part, and the low attenuation enables long-range communication on the same plant under standing wave conditions.
Abstract: Vibratory signals of plant-dwelling insects, such as land bugs of the families Cydnidae and Pentatomidae, are produced mainly by stridulation and/or vibration of some body part. Signals emitted by the vibratory mechanisms have low-frequency characteristics with a relatively narrow frequency peak dominant around 100 Hz and differently expressed frequency modulation and higher harmonics. Such spectral characteristics are well tuned to the transmission properties of plants, and the low attenuation enables long-range communication on the same plant under standing wave conditions. Frequencies of stridulatory signals extend up to 10 kHz. In some groups, vibratory and stridulatory mechanisms may be used simultaneously to produce broadband signals. The subgenual organ, joint chordotonal organs, campaniform sensilla and mechanoreceptors, such as the Johnston's organ in antennae, are used to detect these vibratory signals. Species-specific songs facilitate mate location and recognition, and less species-specific signals provide information about enemies or rival mates.

Journal ArticleDOI
TL;DR: An overview of some genetic, physiological, behavioral, and ecological studies that will contribute to integration of plant and insect molecular genetics with coevolutionary ecology are presented and point to areas in need of study.
Abstract: The interactions of two economically important gall midge species, the rice gall midge and the Hessian fly, with their host plants, rice and wheat, respectively, are characterized by plant defense via R genes and insect adaptation via avr genes. The interaction of a third gall midge species, the orange wheat blossom midge, with wheat defense R genes has not yet exhibited insect adaptation. Because of the simple genetics underlying important aspects of these gall midge-grass interactions, a unique opportunity exists for integrating plant and insect molecular genetics with coevolutionary ecology. We present an overview of some genetic, physiological, behavioral, and ecological studies that will contribute to this integration and point to areas in need of study.

Journal ArticleDOI
TL;DR: Because transmission between hosts usually depends on host body contact, it is unsurprising that feather mite phylogeny often parallels host phylogeny; however, recent cladistic analyses have also found evidence of host-jumping and "missing the boat" in several mite lineages.
Abstract: ▪ Abstract Birds host many lineages of symbiotic mites, but the greatest diversity is shown by the three superfamilies of astigmatan feather mites: Analgoidea, Pterolichoidea, and Freyanoidea. Members of this diphyletic grouping have colonized all parts of the avian integument from their ancestral nidicolous habitat. Whereas some clearly feed on feather pith or skin, acting as parasites, other feather mites are paraphages and consume feather oils without causing structural damage. Sexual dimorphism in feather mites is often extreme, and little is known of the function of many elaborate male structures. Abundance and location of vane-dwelling mites is affected by season, temperature, light, humidity, and host body condition. Because transmission between hosts usually depends on host body contact, it is unsurprising that feather mite phylogeny often parallels host phylogeny; however, recent cladistic analyses have also found evidence of host-jumping and “missing the boat” in several mite lineages.

Journal ArticleDOI
TL;DR: This chapter reviews the insects and mites that induce allergic reactions in humans and describes the methods for naming allergens.
Abstract: Many species of arthropods are the sources of potent allergens that sensitize and induce IgE-mediated allergic reactions in humans. Most of these arthropod allergens are proteins, and the allergic response mechanism to these allergens is the same as it is for allergens from other sources such as plant pollens, molds, and foods. Aside from ingestion of crustaceans (shrimp, lobster), among arthropods, humans have the greatest contact with insects and mites, and as a result allergies to these two groups of arthropods have been the most frequently reported. Because of the large number of people affected by allergic reactions to stinging insects, cockroaches, and dust mites, many allergens of these organisms have been extensively studied, purified, and immunobiochemically characterized and for some recombinant allergens, produced. Cocktails of these recombinant allergens have the potential for use in diagnosis and immunotherapy. In this chapter, we review the insects and mites that induce allergic reactions. Where the information exists, the immunobiochemical characterization of the allergens and the frequency of sensitivity or clinical reactivity in the human population are also reviewed. As background, the beginning of this review includes sections that define allergens, explain the allergic reaction mechanism, and describe the methods for naming allergens.

Journal ArticleDOI
TL;DR: The entoleter, an impacting machine used to crush all insect stages in flour, and hot-water immersion of mangoes, used to kill tephritid fruit fly immatures in fruit are two noteworthy examples.
Abstract: Ideally, integrated pest management should rely on an array of tactics. In reality, the main technologies in use are synthetic pesticides. Because of well-documented problems with reliance on synthetic pesticides, viable alternatives are sorely needed. Physical controls can be classified as passive (e.g., trenches, fences, organic mulch, particle films, inert dusts, and oils), active (e.g., mechanical, polishing, pneumatic, impact, and thermal), and miscellaneous (e.g., cold storage, heated air, flaming, hot-water immersion). Some physical methods such as oils have been used successfully for preharvest treatments for decades. Another recently developed method for preharvest situations is particle films. As we move from production to the consumer, legal constraints restrict the number of options available. Consequently, several physical control methods are used in postharvest situations. Two noteworthy examples are the entoleter, an impacting machine used to crush all insect stages in flour, and hot-water immersion of mangoes, used to kill tephritid fruit fly immatures in fruit. The future of physical control methods will be influenced by sociolegal issues and by new developments in basic and applied research.

Journal ArticleDOI
TL;DR: The recent publication of the genome of this anopheline mosquito will have a profound impact on inquiries at all taxonomic levels, supplying better tools for estimating phylogeny and population structure in the short term, and ultimately allowing the identification of genes and/or regulatory networks underlying ecological differentiation, speciation, and vectorial capacity.
Abstract: The century-old discovery of the role of Anopheles in human malaria transmission precipitated intense study of this genus at the alpha taxonomy level, but until recently little attention was focused on the systematics of this group. The application of molecular approaches to systematic problems ranging from subgeneric relationships to relationships at and below the species level is helping to address questions such as anopheline phylogenetics and biogeography, the nature of species boundaries, and the forces that have structured genetic variation within species. Current knowledge in these areas is reviewed, with an emphasis on the Anopheles gambiae model. The recent publication of the genome of this anopheline mosquito will have a profound impact on inquiries at all taxonomic levels, supplying better tools for estimating phylogeny and population structure in the short term, and ultimately allowing the identification of genes and/or regulatory networks underlying ecological differentiation, speciation, and vectorial capacity.

Journal ArticleDOI
TL;DR: Evidence to date suggests that the dominant mechanisms for control of renal acid-base excretion involve hormonal regulation of H+-V-ATPase activity.
Abstract: Acid-base status influences many aspects of insect biology, including insect distributions in aquatic systems, insect-plant and insect-pathogen interactions, membrane transport phenomena, and the mode of action of pesticides. Acid-base status in the hemolymph and gut lumen of insects is generally well regulated but varies somewhat within individuals owing to effects of temperature, activity, discontinuous ventilation, and diet. The pH of the midgut lumen varies with the phylogeny and feeding ecology. Insect fluids have buffer values similar to those of vertebrates. The respiratory system participates in acid-base homeostasis primarily by regulating the internal carbon dioxide (partial) pressure via changes in spiracular opening and convective ventilation. The epithelia of the renal system and gut participate in hemolymph acid-base regulation by varying acid-base transport in response to organismal acid-base status. Evidence to date suggests that the dominant mechanisms for control of renal acid-base excretion involve hormonal regulation of H+-V-ATPase activity.

Journal ArticleDOI
TL;DR: Comparisons of a select group of basal formicid and isopteran taxa suggest that the reproductive organization of colonies and their patterns of division of labor were particularly influenced, in both groups, by nesting and feeding ecology.
Abstract: Lacking a comprehensive fossil record, solitary representatives of the taxa, and/or a definitive phylogeny of closely related insects, comparison of the life history and social biology of basal, living groups is one of the few available options for developing inferences regarding the early eusocial evolution of ants and termites. Comparisons of a select group of basal formicid and isopteran taxa suggest that the reproductive organization of colonies and their patterns of division of labor were particularly influenced, in both groups, by nesting and feeding ecology. Opportunities for serial inheritance of the nest structure and colony population by kin may have been significant in the evolution of multiple reproductive forms and options. Disease has been a significant factor in the evolution of social organization in ants and termites, but the adaptive mechanisms of infection control differ. Evaluations of the convergent and divergent social biology of the two taxa can generate novel domains of research and testable hypotheses.

Journal ArticleDOI
TL;DR: The role of the mevalonate pathway and the enzyme HMG-CoA reductase (HMG-R) in the development of scolytid aggregation pheromones has been investigated in this paper.
Abstract: Recent application of biochemical and molecular techniques to study the genesis of scolytid aggregation pheromones has revealed that bark beetles are primarily responsible for the endogenous synthesis of widely occurring pheromone components such as ipsenol, ipsdienol, and frontalin. Because many of the chemical signals are isoprenoids, the roles of the mevalonate biosynthetic pathway and the enzyme HMG-CoA reductase (HMG-R) have been investigated. This has led to the identification of endothelial cells in the anterior midgut as the site of synthesis and to the concept that de novo pheromone biosynthesis is regulated in part by the positive effect of juvenile hormone III (JHIII) on gene expression for HMG-R. Both the pronounced regulation by JHIII and the expression pattern of eukaryotic HMG-R argue against synthesis of these pheromones by prokaryotes. As the mevalonate pathway and its regulation have been studied in few other insects, broader issues addressed through the study of scolytid pheromone biosynthesis include major step versus coordinate regulation of the pathway and a genomics approach to elucidating the entire pathway and the mode of action of JHIII.

Journal ArticleDOI
TL;DR: This review summarizes current knowledge about properties of transcriptional regulatory elements, based largely on research in Drosophila melanogaster, and outlines ways that new technologies are providing tools to facilitate the study of transcriptionAL regulatory elements in other insects.
Abstract: Analysis of gene expression is assuming an increasingly important role in elucidating the molecular basis of insect biology. Transcriptional regulation of gene expression is directed by a variety of cis-acting DNA elements that control spatial and temporal patterns of expression. This review summarizes current knowledge about properties of transcriptional regulatory elements, based largely on research in Drosophila melanogaster, and outlines ways that new technologies are providing tools to facilitate the study of transcriptional regulatory elements in other insects.

Journal ArticleDOI
TL;DR: The structures, precursor organizations, distributions, and activities of FaRPs encoded by D. melanogaster FMRFamide (dF MRFamide), myosuppressin (Dms), and sulfakinin ( Dsk) genes are reviewed, and predictions are made on their signaling pathways and biological functions.
Abstract: ▪ Abstract FMRFamide-related peptides (FaRPs) contain a C-terminal RFamide but unique N-terminal extensions. They are expressed throughout the animal kingdom and affect numerous biological activities. Like other animal species, Drosophila melanogaster contains multiple genes that encode different FaRPs. The ease of genetic manipulations, the availability of genomic sequence data, the existence of established bioassays, and its short lifespan make D. melanogaster a versatile experimental organism in which to investigate peptide processing, functions, and signal transduction pathways. Here, the structures, precursor organizations, distributions, and activities of FaRPs encoded by D. melanogaster FMRFamide (dFMRFamide), myosuppressin (Dms), and sulfakinin (Dsk) genes are reviewed, and predictions are made on their signaling pathways and biological functions.

Journal ArticleDOI
TL;DR: This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics.
Abstract: With the advent of significant collaborations between researchers who study insect walking and robotics engineers interested in constructing adaptive legged robots, insect walking is once again poised to make a more significant scientific contribution than the numbers of participants in the field might suggest. This review outlines current knowledge of the physiological basis of insect walking with an emphasis on recent new developments in biomechanics and genetic dissection of behavior, and the impact this knowledge is having on robotics. Engineers have begun to team with neurobiologists to build walking robots whose physical design and functional control are based on insect biology. Such an approach may have benefits for engineering, by leading to the construction of better-performing robots, and for biology, by allowing real-time and real-world tests of critical hypotheses about how locomotor control is effected. It is argued that in order for the new field of biorobotics to have significant influence it must adopt criteria for performance and an experimental approach to the development of walking robots.