scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Genetics in 1993"


Journal ArticleDOI
TL;DR: The Lon Protease, DnaK.T URNOVER of AB ERR ANT PROT EINS in E. COLI, and more.
Abstract: T URNOVER OF AB ERR ANT PROT EINS IN E. COLI . . . . . . . . . . . . . . . . . 445 The Lon Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 DnaK. DnaJ. GrpE. GroEL and GroES . . . . . . . . . . . . . . . . . . . . . . . . . . 447 The Clp Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 The DegP Protease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

2,255 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of eDNA and in VITRO SYNTHESIS of INFECTIOUS VIRAL RNA in the selection and generation of mutants.
Abstract: INFECTIOUS eDNA AND IN VITRO SYNTHESIS OF INFECTIOUS VIRAL RNA 359 SELECTION AND GENERATION OF MUTANTS . . . . . . .... . . .. . . .. . . 360 Selection of Spontaneous Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Random Mutagenesis .... _ . . . . . . . _ _ .... ... ... _ _ . . . . . . . . . 370 Mutagenesis Targeted to Existing or de novo Introduced Restriction Sites . . . . 370 Oligonucleotide-mediated, Site Directed Mutagenesis. . . . . . . . . . . . . . . . . . 371 Exchange of Genomic Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 In Search for Revertants . . . . .. . .. . . .. . . . . . . .. . . . . . .. ..... . . 372

555 citations


Journal ArticleDOI
TL;DR: A chronology of key events and discoveries related to SRY, including the discovery of the “spurious” H2O2 gene and its role in the establishment and spread, are described.
Abstract: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 CLONING OF SRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 EQUIVALENCE OF SRY AND TDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 SRY IN OTHER SPECIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 THE TRANSCRIPTION UNIT OF HUMAN AND MOUSE SRY GENES . . . . . . 80 BIOCHEMISTRY AND MODE OF ACTION OF SRY . . . .. . . . . . . . . . . . . . 82 GENES THAT INTERACT WITH SRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 SRY ACTION AND CELL·CELL INTERACTIONS . . .. . . . . . . . . . . . . . . . . 85 GENES RELATED TO SRY: THE SOX GENES . . . . . . . . . . . . . . . . . . . . . . 87 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

409 citations



Journal ArticleDOI
TL;DR: The Molybdenum Cofactor and Gene Regulation as discussed by the authors were used as genetic tools in the development of the Nitrate Assimilatory Genes as Genetic Tools (NAGs).
Abstract: NITRATE ASSIMILATION IN FUNGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Structural Genes . . ... . . . . . . . . . . .. . . . .. . . . .. . . ........ . . . 116 The Molybdenum Cofactor 117 Gene Regulation 117 NITRATE ASSIMILATION IN PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Nitrate Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Nitrite Reduction 133 Nitrate Uptake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Nitrate Assimilatory Genes as Genetic Tools . . . . . . . . . . . . . . . . . . . . . . . 136

245 citations


Journal ArticleDOI
TL;DR: The Kinesin SuperFamilies, a chronology of key events and stories, and some of the key players in the development of the superfamilies can be found here.
Abstract: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 9 A N OVERVIEW O F THE KINESIN SUPERFAMILY ... . . . . . .. . . .. . . . . 32 1 FAMILIES OF POSSIBLE VESICLE TRANSPORTERS . . . . . . . . . . . . . . . . . 330 The Kinesin Family . . . . ..... . . .. . .. . . . . . . . . . . . ... . . . ... . . 330 The KIF3 Family: KIF3, KLP64D, KLP68D . . . . . . . . . . . . . . . . . . . . . . . 334 The unc-l04 Family: unc-l04, KIFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 FAMILIES OF PROBABLE MITOTIC/MEIOTIC MOTORS . . , . . . . . . . . . . . . 335 The bimC Family: bimC, cut7, EG5, KLP61F, CIN8, KIP] . . . . . . . . . . . . . 335 The KAR3 Family: KAR3, KLPA, ned . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 ORPHANS . ... .... . ... . . .. . . . . .... . . . .. . . . . . .. . ... . .. . . . 34 0 SMYI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 0 nod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1 KLP98A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 MKLPI . . .... . . . . . . . . . . . . . . . . . . . . . 342 CENP-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 KIP2, KLP3A, KLP67A, KIF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 GENERAL THEMES THAT EMERGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Mechanisms for Generating Functional Diversity . . . . . . . . . .. . . .. . . . . . 34 3 Functional Redundancy ... .... . . . . . .. . . .. . . . . . . ... . . . . . . ... 344 Types of Functions Carried Out by Motors . . . . . . . . . . . . . . . . . . . . . . . . 34 6 REMAINING QUESTIONS AND CONCLUSIONS . . . ... . . . . . . ... . .. . . 34 6

183 citations


Journal ArticleDOI
TL;DR: The importance of lateral transfers for host organisms must await answers to more general questions about the long-term evolutionary significance of mobile elements and the extent to which they can act as vectors for host genomic sequences.
Abstract: Although there are several likely instances of trans-kingdom lateral transfer of genomic sequences involving eukaryotes and prokaryotes, almost all well-documented cases of eukaryote to eukaryote transfer seem to involve mobile elements or other parasitic sequences. Consistent with general observations of phylogenetic regularity, the limited molecular evidence suggests that lateral transfer of eukaryotic genomic sequences is at best very rare. However, due to limited data, the possibility of rare transfers that could have considerable evolutionary significance cannot be ruled out. A possible propensity for lateral transfer by mobile elements may reflect their innate capacity for genomic wandering. In addition, occasional cross-species mobility may play a critical role in the long-term evolutionary survival of these elements and have been subject to natural selection. Much work is needed to fully understand the dynamics of TEs and other multigene families. Problems of paralogy, recombination, and variation in evolutionary rates currently present important difficulties in distinguishing conclusively between occasional lateral transfer and strictly vertical transfer. The importance of lateral transfers for host organisms must await answers to more general questions about the long-term evolutionary significance of mobile elements and the extent to which they can act as vectors for host genomic sequences.

180 citations


Journal ArticleDOI
TL;DR: The aim of this book is to provide a history of Kinase Cascades in S. cerevisiae and some of the mechanisms behind their development and use.
Abstract: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 OVERVIEW OF PATHWAY . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . 149 Pheromones . . . . . . ... ... . .. . . .... . . . . ..... . . . . . .. . . . . . . 149 Pheromone Receptors . . . .... . . . . . . .. . . . . . . . . . . . . . . . . ISO G Protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1 Kinases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SteJ2p Transcription Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Inhibition of Gl CyclinlCdc28 Kinase Leads to Cell Cycle Arrest . . . . . . . . . 154 Recovery and Desensitizatiofl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISS IDENTIRCATION OF EFFECTOR CANDIDATES . . . . . . . . . . . . . . . . . . . . ISS MAP KINASE CASCADE . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 159 Action and Order of Kinases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 59 Heterologous MAP Kinase Cascades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 . FUflctional Conservation of MAP Kinase Cascade Componeflls . . . . . . . . . . . 167 Other MAP Kinase Cascades in S. cerevisiae . . . . . . . . . . . .. . . . . . . . . . 168 CELL CYCLE ARREST . . . .. . . . . .. . ... .. ... . . . .. ... . .. . .. . .. 170 DOES CALCINEURIN PLAY A ROLE IN RECOVERY? . . . . . . . . . . . . . . . . 1 7 1 PROSPECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

178 citations



Journal ArticleDOI
TL;DR: Plant-Activated Aromatic Amine Products as Substrates for NIO-Acetyltransferases Molecular Effects of Plant-Activate Promutagens and Inhibitors to Identify Biochemical Pathways in Plant Activation are studied.
Abstract: AROMATIC AMINES AS MODEL PROMUTAGENS FOR STUDIES IN PLANT ACTIVATION . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . Aromatic Amines . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . Inhibitors to Identify Biochemical Pathways in Plant Activation. . . . . . . . . . . Isolation of High Molecular Weight Plani-Activated Aromatic Amine Products . Plant-Activated Aromatic Amine Products as Substrates for NIO-Acetyltransferases Molecular Effects of Plant-Activated Promutagens . . . . . . . . . . . . . . . . . . . CONCLUDING REMARKS . . . . . . .... . . . . . . . . . . . . . .. . . . . . .. . . .

92 citations


Journal ArticleDOI
TL;DR: Chiasma Resolution as a Justification for Chiasma Position and the Number and Position of Exchanges are studied.
Abstract: EXCHANGE AND SEGREGATION . . . ...... . .. . . . . . . . . . . . ..... . . Genetic Approaches to Chromosome Pairing . . . . . . . . . . . . . . .. . . Cytological Studies of Pachytene Morphology . . . . . . . . . . . . . . . . . . . . . . The Number and Position of Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . Chiasma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chiasma Resolution as a Justification for Chiasma Position . . . . . . . . . . . . .

Journal ArticleDOI
TL;DR: There is evidence that in another family, the Papaveraceae, poppy S-glycoproteins are not RNases, and the current evidence is consistent with a process in which the S-RNase moves into the incompatible pollen tube and degrades RNA, including rRNA.
Abstract: It is seven years since the first reports of cDNAs encoding pistil glycoproteins that segregated with particular S-alleles. During this time, the S-glycoproteins of the Solanaceae have been identified as RNases. This enzymatic activity relies on the presence of histidine residues at the putative active site of the RNase, and these are conserved in all S-glycoproteins so far characterized. The proteins also contain "hypervariable" regions that may have some role in allelic specificity. It is particularly interesting that putative S-glycoproteins from Japanese pear, which is from a different family, the Rosaceae, are also RNases. To counter the temptation to extrapolate to other families with gametophytic self-incompatibility, there is evidence that in another family, the Papaveraceae, poppy S-glycoproteins are not RNases. The current evidence is consistent with a process in which the S-RNase moves into the incompatible pollen tube and degrades RNA, including rRNA. As rRNA genes are not transcribed in pollen, the resulting degradation would lead to the death of the cell. But still we are left with some important gaps in our knowledge. How does the S-RNase move across the wall and membrane and into the pollen tube? How is the specificity of the interaction controlled? What is the mechanism of signal transduction? A major bottleneck in unraveling the story is understanding the nature of the S-locus product in pollen. Is it related to the stylar S-locus product or is it the product of a different gene in the same locus? Each question underlines the sketchiness of our knowledge of many plant processes that are not specific to pollination, but that we need to understand if we are to work out the details of self-incompatibility. For example, we have a very incomplete understanding of cell wall synthesis generally and pollen wall synthesis in particular. How do macronutrients move through cell walls to the cytoplasm of cells generally and pollen tubes in particular? What is the nature of the receptor-ligand interaction in plant cells generally and pollen tubes in particular? A similar range of questions and gaps in our knowledge exist in the sporophytic system, exemplified by studies in Brassica spp. In this case, we have no known enzymatic or other function for the stigmatic S-glycoproteins. We do, however, know that the S-locus in Brassica includes at least two genes, one encoding a S-glycoprotein and the other encoding a protein kinase.(ABSTRACT TRUNCATED AT 400 WORDS)



Journal ArticleDOI
TL;DR: The use of Caenorhabditis elegans molecular genetics to study problems of intercellular signaling and signal transduction is discussed.
Abstract: Intercellular signaling and signal transduction underlie most aspects of development and behavior. To understand any specific case we must identify the ligands, receptors and transducers, as well as regulators that modulate the activity of the signaling pathway. To understand more general aspects of signaling, we have to address the questions: To what extent are there modular signaling pathways, i.e. pathways that act as coherent units? How many such pathways are there? What factors affect the action of a universal pathway in particular cases? How widely is a given component or pathway used? How are the effects of multiple signaling pathways integrated? Here I discuss the use of Caenorhabditis elegans molecular genetics to study problems of intercellular signaling and signal transduction.