scispace - formally typeset
Institution

University of Vermont

EducationBurlington, Vermont, United States
About: University of Vermont is a(n) education organization based out in Burlington, Vermont, United States. It is known for research contribution in the topic(s): Population & Poison control. The organization has 17592 authors who have published 38251 publication(s) receiving 1609874 citation(s). The organization is also known as: UVM & University of Vermont and State Agricultural College.


Papers
More filters
Journal ArticleDOI

[...]

23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

7,735 citations

Journal ArticleDOI

[...]

TL;DR: A series of common pitfalls in quantifying and comparing taxon richness are surveyed, including category‐subcategory ratios (species-to-genus and species-toindividual ratios) and rarefaction methods, which allow for meaningful standardization and comparison of datasets.
Abstract: Species richness is a fundamental measurement of community and regional diversity, and it underlies many ecological models and conservation strategies. In spite of its importance, ecologists have not always appreciated the effects of abundance and sampling effort on richness measures and comparisons. We survey a series of common pitfalls in quantifying and comparing taxon richness. These pitfalls can be largely avoided by using accumulation and rarefaction curves, which may be based on either individuals or samples. These taxon sampling curves contain the basic information for valid richness comparisons, including category‐subcategory ratios (species-to-genus and species-toindividual ratios). Rarefaction methods ‐ both sample-based and individual-based ‐ allow for meaningful standardization and comparison of datasets. Standardizing data sets by area or sampling effort may produce very different results compared to standardizing by number of individuals collected, and it is not always clear which measure of diversity is more appropriate. Asymptotic richness estimators provide lower-bound estimates for taxon-rich groups such as tropical arthropods, in which observed richness rarely reaches an asymptote, despite intensive sampling. Recent examples of diversity studies of tropical trees, stream invertebrates, and herbaceous plants emphasize the importance of carefully quantifying species richness using taxon sampling curves.

5,315 citations

Journal ArticleDOI

[...]

TL;DR: This research highlights the importance of the fit between technologies and users' tasks in achieving individual performance impacts from information technology and suggests that task-technology fit when decomposed into its more detailed components, could be the basis for a strong diagnostic tool to evaluate whether information systems and services in a given organization are meeting user needs.
Abstract: A key concern in Information Systems (IS) research has been to better understand the linkage between information systems and individual performance. The research reported in this study has two primary objectives: (1) to propose a comprehensive theoretical model that incorporates valuable insights from two complementary streams of research, and (2) to empirically test the core of the model. At the heart of the new model is the assertion that for an information technology to have a positive impact on individual performance, the technology: (1) must be utilized and (2) must be a good fit with the tasks it supports. This new model is moderately supported by an analysis of data from over 600 individuals in two companies. This research highlights the importance of the fit between technologies and users' tasks in achieving individual performance impacts from information technology. It also suggests that task-technology fit when decomposed into its more detailed components, could be the basis for a strong diagnostic tool to evaluate whether information systems and services in a given organization are meeting user needs.

4,373 citations

Journal ArticleDOI

[...]

TL;DR: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
Abstract: This paper presents the top 10 data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) in December 2006: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. These top 10 algorithms are among the most influential data mining algorithms in the research community. With each algorithm, we provide a description of the algorithm, discuss the impact of the algorithm, and review current and further research on the algorithm. These 10 algorithms cover classification, clustering, statistical learning, association analysis, and link mining, which are all among the most important topics in data mining research and development.

4,268 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

3,977 citations


Authors

Showing all 17592 results

NameH-indexPapersCitations
Albert Hofman2672530321405
Ralph B. D'Agostino2261287229636
George Davey Smith2242540248373
Stephen V. Faraone1881427140298
Valentin Fuster1791462185164
Dennis J. Selkoe177607145825
Anders Björklund16576984268
Alfred L. Goldberg15647488296
Christopher P. Cannon1511118108906
Debbie A Lawlor1471114101123
Roger J. Davis147498103478
Andrew S. Levey144600156845
Jonathan G. Seidman13756389782
Yu Huang136149289209
Christine E. Seidman13451967895
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

97% related

Duke University
200.3K papers, 10.7M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

Yale University
220.6K papers, 12.8M citations

96% related

Cornell University
235.5K papers, 12.2M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202223
20211,839
20201,762
20191,653
20181,569
20171,579