scispace - formally typeset
Search or ask a question

Showing papers in "Antibiotics in 2022"


Journal ArticleDOI
TL;DR: In this article , an analytical overview of the antibacterial and antifungal properties of Schiff bases and chitosan-based SBs as well as SBs-functionalized nanoparticles is provided.
Abstract: Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.

73 citations


Journal ArticleDOI
TL;DR: Considering the promising preliminary results of the EPIC-HR trial, nirmatrelvir/ritonavir in conjunction with vaccines and non-pharmacological interventions, may represent the dawn in the dark of the COVID-19 pandemic.
Abstract: Nirmatrelvir/ritonavir (Paxlovid™) is an effective and safe antiviral drug that inhibits the main protease (Mpro), 3CL protease, of SARS-CoV-2. A reduction in COVID-19-related hospitalization or death was observed in patients treated with nirmatrelvir/ritonavir within five days of symptom onset. Moreover, good oral availability enables the usage of nirmatrelvir/ritonavir, not only in hospitalized patients, but also among outpatients. Nirmatrelvir (PF-07321332) has been demonstrated to stop the spread of COVID-19 in animal models. Despite frequent mutations in the viral genomes of SARS-CoV-2, nirmatrelvir shows an effective antiviral effect against recent coronavirus mutants. Despite the promising antiviral effect of nirmatrelvir, there are several unresolved concerns. First, the final results of large-scale clinical trials for early therapy of mild cases of COVID-19 are not yet published. Second, the effectiveness of nirmatrelvir against upcoming variants in the coming years requires close monitoring. Considering the promising preliminary results of the EPIC-HR trial, nirmatrelvir/ritonavir in conjunction with vaccines and non-pharmacological interventions, may represent the dawn in the dark of the COVID-19 pandemic.

56 citations


Journal ArticleDOI
TL;DR: An overview of recent research in biological and pharmaceutical aspects of curcumin is provided to provide an overview of methods of sample preparation for its isolation, analytical methods for identification and quantification ofCurcumin in different matrices, and different techniques for developing formulations.
Abstract: Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione) is a natural lipophilic polyphenol that exhibits significant pharmacological effects in vitro and in vivo through various mechanisms of action. Numerous studies have identified and characterised the pharmacokinetic, pharmacodynamic, and clinical properties of curcumin. Curcumin has an anti-inflammatory, antioxidative, antinociceptive, antiparasitic, antimalarial effect, and it is used as a wound-healing agent. However, poor curcumin absorption in the small intestine, fast metabolism, and fast systemic elimination cause poor bioavailability of curcumin in human beings. In order to overcome these problems, a number of curcumin formulations have been developed. The aim of this paper is to provide an overview of recent research in biological and pharmaceutical aspects of curcumin, methods of sample preparation for its isolation (Soxhlet extraction, ultrasound extraction, pressurised fluid extraction, microwave extraction, enzyme-assisted aided extraction), analytical methods (FTIR, NIR, FT-Raman, UV-VIS, NMR, XRD, DSC, TLC, HPLC, HPTLC, LC-MS, UPLC/Q-TOF-MS) for identification and quantification of curcumin in different matrices, and different techniques for developing formulations. The optimal sample preparation and use of an appropriate analytical method will significantly improve the evaluation of formulations and the biological activity of curcumin.

52 citations


Journal ArticleDOI
TL;DR: Both gels, respectively, containing antioxidant natural ingredients and chlorhexidine, are effective for the domiciliary treatment of periodontitis and are required to evaluate the singular chemical compounds of the gels expected to exert the beneficial action assessed in this preliminary study.
Abstract: Periodontitis is a progressive destruction of both soft and hard tooth-supporting tissues. In the last years, probiotics have been proposed as a support to the gold standard treatment scaling and root planing (SRP), but no extensive literature is present as regards the effect of the more recent postbiotics. Thirty patients subjected to SRP were randomly assigned to two domiciliary hygiene treatments based on the following oral gels: the postbiotics-based Biorepair Parodontgel Intensive (Group 1) and the chlorhexidine-based Curasept Periodontal Gel (Group 2). At baseline (T0) and after 3 and 6 months (T1–T2), the following periodontal clinical parameters were recorded: Probing Pocket Depth (PPD), recession, dental mobility, Bleeding on Probing (BoP), and Plaque Control Record (PCR). A significant intragroup reduction was assessed in both groups for PPD, BoP, and PCR; conversely, recession significantly increased in both groups, whereas dental mobility did not vary. As regards intergroup comparisons, no statistically significant differences were assessed. Both gels, respectively, containing antioxidant natural ingredients and chlorhexidine, are effective for the domiciliary treatment of periodontitis. Further studies are required to evaluate the singular chemical compounds of the gels expected to exert the beneficial action assessed in this preliminary study.

52 citations


Journal ArticleDOI
TL;DR: In this article , the authors present a review of the strategies that are being applied or proposed as potential alternatives to traditional antibiotics, including combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods and unconventional techniques, including the CRISPR-Cas system.
Abstract: Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.

51 citations


Journal ArticleDOI
TL;DR: A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment.
Abstract: Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.

42 citations


Journal ArticleDOI
TL;DR: With a continuous increase in antimicrobial resistance, additional efforts are needed to develop innovative, rapid, accurate, and portable diagnostic tools for AST.
Abstract: Antimicrobial resistance (AMR) has emerged as a major threat to public health globally. Accurate and rapid detection of resistance to antimicrobial drugs, and subsequent appropriate antimicrobial treatment, combined with antimicrobial stewardship, are essential for controlling the emergence and spread of AMR. This article reviews common antimicrobial susceptibility testing (AST) methods and relevant issues concerning the advantages and disadvantages of each method. Although accurate, classic technologies used in clinical microbiology to profile antimicrobial susceptibility are time-consuming and relatively expensive. As a result, physicians often prescribe empirical antimicrobial therapies and broad-spectrum antibiotics. Although recently developed AST systems have shown advantages over traditional methods in terms of testing speed and the potential for providing a deeper insight into resistance mechanisms, extensive validation is required to translate these methodologies to clinical practice. With a continuous increase in antimicrobial resistance, additional efforts are needed to develop innovative, rapid, accurate, and portable diagnostic tools for AST. The wide implementation of novel devices would enable the identification of the optimal treatment approaches and the surveillance of antibiotic resistance in health, agriculture, and the environment, allowing monitoring and better tackling the emergence of AMR.

41 citations


Journal ArticleDOI
TL;DR: The current status of the SCCmec types, S CCmec subtypes, rules for nomenclature, and multiple methods for identifying SCCMec types and subtypes were summarized in this review.
Abstract: Staphylococcal cassette chromosome mec (SCCmec) typing was established in the 2000s and has been employed as a tool for the molecular epidemiology of methicillin-resistant Staphylococcus aureus, as well as the evolution investigation of Staphylococcus species. Molecular cloning and the conventional sequencing of SCCmec have been adopted to verify the presence and structure of a novel SCCmec type, while convenient PCR-based SCCmec identification methods have been used in practical settings for many years. In addition, whole-genome sequencing has been widely used, and various SCCmec and similar structures have been recently identified in various species. The current status of the SCCmec types, SCCmec subtypes, rules for nomenclature, and multiple methods for identifying SCCmec types and subtypes were summarized in this review, according to the perspective of the International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements.

36 citations


Journal ArticleDOI
TL;DR: The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals and will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Abstract: Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.

34 citations


Journal ArticleDOI
TL;DR: The history and challenges of antibiotics discovery are reviewed and different innovative new leads mechanisms expected to replenish the pipeline are described, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.
Abstract: The history of antimicrobial resistance (AMR) evolution and the diversity of the environmental resistome indicate that AMR is an ancient natural phenomenon. Acquired resistance is a public health concern influenced by the anthropogenic use of antibiotics, leading to the selection of resistant genes. Data show that AMR is spreading globally at different rates, outpacing all efforts to mitigate this crisis. The search for new antibiotic classes is one of the key strategies in the fight against AMR. Since the 1980s, newly marketed antibiotics were either modifications or improvements of known molecules. The World Health Organization (WHO) describes the current pipeline as bleak, and warns about the scarcity of new leads. A quantitative and qualitative analysis of the pre-clinical and clinical pipeline indicates that few antibiotics may reach the market in a few years, predominantly not those that fit the innovative requirements to tackle the challenging spread of AMR. Diversity and innovation are the mainstays to cope with the rapid evolution of AMR. The discovery and development of antibiotics must address resistance to old and novel antibiotics. Here, we review the history and challenges of antibiotics discovery and describe different innovative new leads mechanisms expected to replenish the pipeline, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.

33 citations


Journal ArticleDOI
TL;DR: Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents.
Abstract: Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.

Journal ArticleDOI
TL;DR: The mode of action of carbapenem and the mechanisms of carbAPenem resistance are reviewed, which are a major global public health problem.
Abstract: Carbapenem antibiotics are the most effective antimicrobials for the treatment of infections caused by the most resistant bacteria. They belong to the category of β-lactams that include the penicillins, cephalosporins, monobactams and carbapenems. This class of antimicrobials has a broader spectrum of activity than most other beta-lactams antibiotics and are the most effective against Gram-positive and Gram-negative bacteria. All β-lactams antibiotics have a similar molecular structure: the carbapenems together with the β-lactams. This combination gives an extraordinary stability to the molecule against the enzymes inactivating the β-lactams. They are safe to use and therefore widespread use in many countries has given rise to carbapenem resistance which is a major global public health problem. The carbapenem resistance in some species is intrinsic and consists of the capacity to resist the action of antibiotics with several mechanisms: for the absence of a specific target, or an intrinsic difference in the composition of cytoplasmatic membrane or the inability to cross the outer membrane. In addition to intrinsic resistance, bacteria can develop resistance to antibiotics with several mechanisms that can be gathered in three main groups. The first group includes antibiotics with poor penetration into the outer membrane of bacterium or antibiotic efflux. The second includes bacteria that modify the target of the antibiotics through genetic mutations or post-translational modification of the target. The third includes bacteria that act with enzyme-catalyzed modification and this is due to the production of beta-lactamases, that are able to inactivate carbapenems and so called carbapenemases. In this review, we focus on the mode of action of carbapenem and the mechanisms of carbapenem resistance.

Journal ArticleDOI
TL;DR: Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Abstract: Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.

Journal ArticleDOI
TL;DR:
Abstract: Antimicrobial resistance (AMR) is a challenge to human wellbeing the world over and is one of the more serious public health concerns. AMR has the potential to emerge as a serious healthcare threat if left unchecked, and could put into motion another pandemic. This establishes the need for the establishment of global health solutions around AMR, taking into account microdata from different parts of the world. The positive influences in this regard could be establishing conducive social norms, charting individual and group behavior practices that favor global human health, and lastly, increasing collective awareness around the need for such action. Apart from being an emerging threat in the clinical space, AMR also increases treatment complexity, posing a real challenge to the existing guidelines around the management of antibiotic resistance. The attribute of resistance development has been linked to many genetic elements, some of which have complex transmission pathways between microbes. Beyond this, new mechanisms underlying the development of AMR are being discovered, making this field an important aspect of medical microbiology. Apart from the genetic aspects of AMR, other practices, including misdiagnosis, exposure to broad-spectrum antibiotics, and lack of rapid diagnosis, add to the creation of resistance. However, upgrades and innovations in DNA sequencing technologies with bioinformatics have revolutionized the diagnostic industry, aiding the real-time detection of causes of AMR and its elements, which are important to delineating control and prevention approaches to fight the threat.

Journal ArticleDOI
TL;DR: The COVID-19 pandemic is associated with increased consumption of antibiotics and has influenced the prevalence of infections caused by MDR isolates.
Abstract: The spread of COVID-19 pandemic may have affected antibiotic consumption patterns and the prevalence of colonized or infected by multidrug-resistant (MDR) bacteria. We investigated the differences in the consumption of antibiotics easily prone to resistance and the prevalence of MDR bacteria during the COVID-19 pandemic (March 2020 to September 2021) compared to in the pre-pandemic period (March 2018 to September 2019). Data on usage of antibiotics and infections caused by methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA) were obtained from hospitalized patients in four university hospitals. The consumption of penicillin with β-lactamase inhibitors (3.4% in ward, 5.8% in intensive care unit (ICU)), and carbapenems (25.9% in ward, 12.1% in ICU) increased during the pandemic period. The prevalence of MRSA (4.7%), VRE (49.0%), CRE (22.4%), and CRPA (20.1%) isolated in clinical samples from the ward and VRE (26.7%) and CRE (36.4%) isolated in clinical samples from the ICU were significantly increased, respectively. Meanwhile, only the prevalence of CRE (38.7%) isolated in surveillance samples from the ward increased. The COVID-19 pandemic is associated with increased consumption of antibiotics and has influenced the prevalence of infections caused by MDR isolates.

Journal ArticleDOI
TL;DR: In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials.
Abstract: Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential. In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials. Poor water solubility, low bioavailability, and rapid degradation are the main disadvantages of curcumin. The use of nanotechnologies for the delivery of curcumin could increase the prospects for its clinical application, mainly in orthopedics and other surgical scenarios. Curcumin-loaded nanoparticles revealed antimicrobial properties against S. aureus in periprosthetic joint infections.

Journal ArticleDOI
TL;DR: Therapeutic options for invasive candidiasis are generally limited to four classes of systemic antifungals (polyenes, antimetabolite 5-fluorocytosine, azoles, echinocandins) with the two latter being highly effective and well-tolerated and hence the most widely used.
Abstract: Candida species, belonging to commensal microbial communities in humans, cause opportunistic infections in individuals with impaired immunity. Pathogens encountered in more than 90% cases of invasive candidiasis include C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The most frequently diagnosed invasive infection is candidemia. About 50% of candidemia cases result in deep-seated infection due to hematogenous spread. The sensitivity of blood cultures in autopsy-proven invasive candidiasis ranges from 21% to 71%. Non-cultural methods (beta-D-glucan, T2Candida assays), especially beta-D-glucan in combination with procalcitonin, appear promising in the exclusion of invasive candidiasis with high sensitivity (98%) and negative predictive value (95%). There is currently a clear deficiency in approved sensitive and precise diagnostic techniques. Omics technologies seem promising, though require further development and study. Therapeutic options for invasive candidiasis are generally limited to four classes of systemic antifungals (polyenes, antimetabolite 5-fluorocytosine, azoles, echinocandins) with the two latter being highly effective and well-tolerated and hence the most widely used. Principles and methods of treatment are discussed in this review. The emergence of pan-drug-resistant C. auris strains indicates an insufficient choice of available medications. Further surveillance, alongside the development of diagnostic and therapeutic methods, is essential.

Journal ArticleDOI
TL;DR: This paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds.
Abstract: The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.

Journal ArticleDOI
TL;DR: This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.
Abstract: Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.

Journal ArticleDOI
TL;DR: The current study results showed a comparatively high prevalence of AMR, which may become a severe health-related issue in the future, and strict compliance of antibiotic usage and employment of antibiotic stewardship programs at every public or private institutional level are recommended.
Abstract: In addition to the pathogenesis of SARS-CoV-2, bacterial co-infection plays an essential role in the incidence and progression of SARS-CoV-2 infections by increasing the severity of infection, as well as increasing disease symptoms, death rate and antimicrobial resistance (AMR). The current study was conducted in a tertiary-care hospital in Lahore, Pakistan, among hospitalized COVID-19 patients to see the prevalence of bacterial co-infections and the AMR rates among different isolated bacteria. Clinical samples for the laboratory diagnosis were collected from 1165 hospitalized COVID-19 patients, of which 423 were found to be positive for various bacterial infections. Most of the isolated bacteria were Gram-negative rods (n = 366), followed by Gram-positive cocci (n = 57). A significant association (p < 0.05) was noted between the hospitalized COVID-19 patients and bacterial co-infections. Staphylococcus aureus (S. aureus) showed high resistance against tetracycline (61.7%), Streptococcus pyogenes against penicillin (100%), E. coli against Amp-clavulanic acid (88.72%), Klebsiella pneumoniae against ampicillin (100%), and Pseudomonas aeruginosa against ciprofloxacin (75.40%). Acinetobacter baumannii was 100% resistant to the majority of tested antibiotics. The prevalence of methicillin-resistant S. aureus (MRSA) was 14.7%. The topmost symptoms of >50% of COVID-19 patients were fever, fatigue, dyspnea and chest pain with a significant association (p < 0.05) in bacterial co-infected patients. The current study results showed a comparatively high prevalence of AMR, which may become a severe health-related issue in the future. Therefore, strict compliance of antibiotic usage and employment of antibiotic stewardship programs at every public or private institutional level are recommended.

Journal ArticleDOI
TL;DR: In this paper , the presence of genetic determinants of β-lactam resistance in 102 multi-drug resistant (MDR) K. pneumoniae isolates from patients admitted to two central hospitals in northern Portugal from 2010 to 2020 was assessed.
Abstract: While antibiotic resistance is rising to dangerously high levels, resistance mechanisms are spreading globally among diverse bacterial species. The emergence of antibiotic-resistant Klebsiella pneumoniae, mainly due to the production of antibiotic-inactivating enzymes, is currently responsible for most treatment failures, threatening the effectiveness of classes of antibiotics used for decades. This study assessed the presence of genetic determinants of β-lactam resistance in 102 multi-drug resistant (MDR) K. pneumoniae isolates from patients admitted to two central hospitals in northern Portugal from 2010 to 2020. Antimicrobial susceptibility testing revealed a high rate (>90%) of resistance to most β-lactam antibiotics, except for carbapenems and cephamycins, which showed antimicrobial susceptibility rates in the range of 23.5–34.3% and 40.2–68.6%, respectively. A diverse pool of β-lactam resistance genetic determinants, including carbapenemases- (i.e., blaKPC-like and blaOXA-48-like), extended-spectrum β-lactamases (ESBL; i.e., blaTEM-like, blaCTX-M-like and blaSHV-like), and AmpC β-lactamases-coding genes (i.e., blaCMY-2-like and blaDHA-like) were found in most K. pneumoniae isolates. blaKPC-like (72.5%) and ESBL genes (37.3–74.5%) were the most detected, with approximately 80% of K. pneumoniae isolates presenting two or more resistance genes. As the optimal treatment of β-lactamase-producing K. pneumoniae infections remains problematic, the high co-occurrence of multiple β-lactam resistance genes must be seen as a serious warning of the problem of antimicrobial resistance.

Journal ArticleDOI
TL;DR: Excessive prescribing of antibiotics is still occurring among COVID-19 patients in Pakistan; however, rates are reducing, and urgent measures are needed for further reductions.
Abstract: Background: COVID-19 patients are typically prescribed antibiotics empirically despite concerns. There is a need to evaluate antibiotic use among hospitalized COVID-19 patients during successive pandemic waves in Pakistan alongside co-infection rates. Methods: A retrospective review of patient records among five tertiary care hospitals during successive waves was conducted. Data were collected from confirmed COVID-19 patients during the first five waves. Results: 3221 patients were included. The majority were male (51.53%), residents from urban areas (56.35%) and aged >50 years (52.06%). Cough, fever and a sore throat were the clinical symptoms in 20.39%, 12.97% and 9.50% of patients, respectively. A total of 23.62% of COVID-19 patients presented with typically mild disease and 45.48% presented with moderate disease. A high prevalence of antibiotic prescribing (89.69%), averaging 1.66 antibiotics per patient despite there only being 1.14% bacterial co-infections and 3.14% secondary infections, was found. Antibiotic use significantly increased with increasing severity, elevated WBCs and CRP levels, a need for oxygen and admittance to the ICU; however, this decreased significantly after the second wave (p < 0.001). Commonly prescribed antibiotics were piperacillin plus an enzyme inhibitor (20.66%), azithromycin (17.37%) and meropenem (15.45%). Common pathogens were Staphylococcus aureus (24.19%) and Streptococcus pneumoniae (20.96%). The majority of the prescribed antibiotics (93.35%) were from the WHO’s “Watch” category. Conclusions: Excessive prescribing of antibiotics is still occurring among COVID-19 patients in Pakistan; however, rates are reducing. Urgent measures are needed for further reductions.

Journal ArticleDOI
TL;DR: It was encouraging to see the low hospitalisation rates and limited use of antimalarials, antivirals and antiparasitic medicines, however, the high empiric use of antibiotics, alongside limited switching to oral formulations, is a concern that can be addressed by instigating the appropriate programmes.
Abstract: There is an increasing focus on researching children admitted to hospital with new variants of COVID-19, combined with concerns with hyperinflammatory syndromes and the overuse of antimicrobials. Paediatric guidelines have been produced in Bangladesh to improve their care. Consequently, the objective is to document the management of children with COVID-19 among 24 hospitals in Bangladesh. Key outcome measures included the percentage prescribed different antimicrobials, adherence to paediatric guidelines and mortality rates using purposely developed report forms. The majority of 146 admitted children were aged 5 years or under (62.3%) and were boys (58.9%). Reasons for admission included fever, respiratory distress and coughing; 86.3% were prescribed antibiotics, typically parenterally, on the WHO ‘Watch’ list, and empirically (98.4%). There were no differences in antibiotic use whether hospitals followed paediatric guidance or not. There was no prescribing of antimalarials and limited prescribing of antivirals (5.5% of children) and antiparasitic medicines (0.7%). The majority of children (92.5%) made a full recovery. It was encouraging to see the low hospitalisation rates and limited use of antimalarials, antivirals and antiparasitic medicines. However, the high empiric use of antibiotics, alongside limited switching to oral formulations, is a concern that can be addressed by instigating the appropriate programmes.

Journal ArticleDOI
TL;DR: This review aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.
Abstract: The growing emergence of antimicrobial resistance represents a global problem that not only influences healthcare systems but also has grave implications for political and economic processes. As the discovery of novel antimicrobial agents is lagging, one of the solutions is innovative therapeutic options that would expand our armamentarium against this hazard. Compounds of interest in many such studies are antimicrobial peptides (AMPs), which actually represent the host’s first line of defense against pathogens and are involved in innate immunity. They have a broad range of antimicrobial activity against Gram-negative and Gram-positive bacteria, fungi, and viruses, with specific mechanisms of action utilized by different AMPs. Coupled with a lower propensity for resistance development, it is becoming clear that AMPs can be seen as emerging and very promising candidates for more pervasive usage in the treatment of infectious diseases. However, their use in quotidian clinical practice is not without challenges. In this review, we aimed to summarize state-of-the-art evidence on the structure and mechanisms of action of AMPs, as well as to provide detailed information on their antimicrobial activity. We also aimed to present contemporary evidence of clinical trials and application of AMPs and highlight their use beyond infectious diseases and potential challenges that may arise with their increasing availability.

Journal ArticleDOI
TL;DR: A review of nanomaterials used in the field of food packaging technology is presented in this article , with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.
Abstract: Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.

Journal ArticleDOI
TL;DR: Terazosin may mitigate S. Typhimurium virulence owing to its hindering QS and down-regulating T3SS encoding genes besides its inhibition of bacterial espionage.
Abstract: Salmonella enterica is an invasive intracellular pathogen and hires diverse systems to manipulate its survival in the host cells. Salmonella could eavesdrop on the host cells, sensing and responding to the produced adrenergic hormones and other neurotransmitters, which results in the augmentation of its virulence and establishes its accommodation in host cells. The current study aims to assess the anti-virulence effect of α-adrenergic antagonist terazosin on S. Typhimurium. Our findings show that terazosin significantly reduced S. Typhimurium adhesion and biofilm formation. Furthermore, terazosin significantly decreased invasion and intracellular replication of S. Typhimurium. Interestingly, in vivo, terazosin protected the mice from S. Typhimurium pathogenesis. To understand the terazosin anti-virulence activity, its effect on quorum sensing (QS), bacterial espionage, and type three secretion system (T3SS) was studied. Strikingly, terazosin competed on the membranal sensors that sense adrenergic hormones and down-regulated their encoding genes, which indicates the ability of terazosin to diminish the bacterial eavesdropping on the host cells. Moreover, terazosin significantly reduced the Chromobacterium violaceum QS-controlled pigment production and interfered with the QS receptor Lux-homolog Salmonella SdiA, which indicates the possible terazosin-mediated anti-QS activity. Furthermore, terazosin down-regulated the expression of T3SS encoding genes. In conclusion, terazosin may mitigate S. Typhimurium virulence owing to its hindering QS and down-regulating T3SS encoding genes besides its inhibition of bacterial espionage.

Journal ArticleDOI
TL;DR: A review of nanoparticles and various nanosized materials as antimicrobial agents based on their size, nature, etc is presented in this article , where the authors emphasize the importance of nanomaterials for the fields of medical science and allied health science.
Abstract: Bacterial strains resistant to antimicrobial treatments, such as antibiotics, have emerged as serious clinical problems, necessitating the development of novel bactericidal materials. Nanostructures with particle sizes ranging from 1 to 100 nanometers have appeared recently as novel antibacterial agents, which are also known as “nanoantibiotics”. Nanomaterials have been shown to exert greater antibacterial effects on Gram-positive and Gram-negative bacteria across several studies. Antibacterial nanofilms for medical implants and restorative matters to prevent bacterial harm and antibacterial vaccinations to control bacterial infections are examples of nanoparticle applications in the biomedical sectors. The development of unique nanostructures, such as nanocrystals and nanostructured materials, is an exciting step in alternative efforts to manage microorganisms because these materials provide disrupted antibacterial effects, including better biocompatibility, as opposed to minor molecular antimicrobial systems, which have short-term functions and are poisonous. Although the mechanism of action of nanoparticles (NPs) is unknown, scientific suggestions include the oxidative-reductive phenomenon, reactive ionic metals, and reactive oxygen species (ROS). Many synchronized gene transformations in the same bacterial cell are essential for antibacterial resistance to emerge; thus, bacterial cells find it difficult to build resistance to nanoparticles. Therefore, nanomaterials are considered as advanced solution tools for the fields of medical science and allied health science. The current review emphasizes the importance of nanoparticles and various nanosized materials as antimicrobial agents based on their size, nature, etc.

Journal ArticleDOI
TL;DR: This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antim antibiotic use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance.
Abstract: Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development of multiple antimicrobials has become available for humans and animals with no appropriate guidance. As a result, inappropriate use of antimicrobials has significantly produced antimicrobial resistance. However, an increasing number of infections such as sepsis are untreatable due to this antimicrobial resistance. In either case, life-saving drugs are rendered ineffective in most cases. The actual causes of antimicrobial resistance are complex and versatile. A lack of adequate health services, unoptimized use of antimicrobials in humans and animals, poor water and sanitation systems, wide gaps in access and research and development in healthcare technologies, and environmental pollution have vital impacts on antimicrobial resistance. This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antimicrobial use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance.

Journal ArticleDOI
TL;DR: This study applied the World Health Organization’s standardized point prevalence survey methodology to assess antibiotic use in public and private not-for-profit hospitals across the country and found that 74% of patients were on one or more antibiotics.
Abstract: Standardized monitoring of antibiotic use underpins the effective implementation of antimicrobial stewardship interventions in combatting antimicrobial resistance (AMR). To date, few studies have assessed antibiotic use in hospitals in Uganda to identify gaps that require intervention. This study applied the World Health Organization’s standardized point prevalence survey methodology to assess antibiotic use in 13 public and private not-for-profit hospitals across the country. Data for 1077 patients and 1387 prescriptions were collected between December 2020 and April 2021 and analyzed to understand the characteristics of antibiotic use and the prevalence of the types of antibiotics to assess compliance with Uganda Clinical Guidelines; and classify antibiotics according to the WHO Access, Watch, and Reserve classification. This study found that 74% of patients were on one or more antibiotics. Compliance with Uganda Clinical Guidelines was low (30%); Watch-classified antibiotics were used to a high degree (44% of prescriptions), mainly driven by the wide use of ceftriaxone, which was the most frequently used antibiotic (37% of prescriptions). The results of this study identify key areas for the improvement of antimicrobial stewardship in Uganda and are important benchmarks for future evaluations.

Journal ArticleDOI
TL;DR: The current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures is reviewed, the current methods of plasmsid extraction and analysis are summarized, and the mechanism ofplasmid splice transfer using the F factor as an example is introduced.
Abstract: Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth’s surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority.