scispace - formally typeset
Search or ask a question

Showing papers in "Applied and Environmental Microbiology in 1988"


Journal ArticleDOI
TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Abstract: A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

2,233 citations


Journal ArticleDOI
TL;DR: In this paper, a bioassay was used as a monitoring system to isolate cancer-promoting compounds from cultures of Fusarium moniliforme MRC 826 and two pure compounds were isolated, and these have been chemically characterized and given the trivial names fumonisin B1 and B2.
Abstract: Cultures on corn of Fusarium moniliforme MRC 826 are known to cause leukoencephalomalacia in horses and to be toxic and hepatocarcinogenic in rats. Culture material of this F. moniliforme isolate has also been shown to exhibit cancer-promoting activity in a short-term cancer initiation-promotion bioassay with diethylnitrosamine-initiated rats and the induction of gamma-glutamyl-transpeptidase-positive (GGT+) foci as an endpoint after 4 weeks of promotion. This bioassay was used as a monitoring system to isolate cancer-promoting compounds from cultures of F. moniliforme MRC 826. Culture material was successively extracted with ethyl acetate and CH3OH-H2O (3:1). Most of the cancer-promoting activity was recovered in the CH3OH-H2O extract and remained in the aqueous phase following partitioning of this extract between CH3OH-H2O (1:3) and CHCl3. The CH3OH-H2O fraction was chromatographed on an Amberlite XAD-2 column, and the active fraction was eluted with CH3OH. This fraction was chromatographed on a silica gel column with CHCl3-CH3OH-CH3COOH (6:3:1) as eluent and further purified on a C18 reverse-phase column. Two pure compounds were isolated, and these have been chemically characterized and given the trivial names fumonisin B1 and B2. At least 2 g of the major compound fumonisin B1 was purified from 1 kg of culture material. Fumonisin B1 in the diet (0.1%) significantly (P less than 0.001) induced the formation of GGT+ foci in the livers of initiated as well as noninitiated rats.(ABSTRACT TRUNCATED AT 250 WORDS)

1,222 citations


Journal ArticleDOI
TL;DR: In spite of the higher cell yields obtained with octanoate and nonanoate, the use of hexanoates and heptanoate yielded higher-molecular-weight polymers, which represent an entirely new class of biodegradable thermoplastics.
Abstract: Pseudomonas oleovorans was grown in homogeneous media containing n-alkanoic acids, from formate to decanoate, as the sole carbon sources. Formation of intracellular poly(β-hydroxyalkanoates) was observed only for hexanoate and the higher n-alkanoic acids. The maximum isolated polymer yields were approximately 30% of the cellular dry weight with growth on either octanoate or nonanoate. In most cases, the major repeating unit in the polymer had the same chain length as the n-alkanoic acid used for growth, but units with two carbon atoms less or more than the acid used as a carbon source were also generally present in the polyesters formed. Indeed, copolymers containing as many as six different types of β-hydroxyalkanoate units were formed. The weight average molecular weights of the poly(β-hydroxyalkanoate) copolymers produced by P. oleovorans ranged from 90,000 to 370,000. In spite of the higher cell yields obtained with octanoate and nonanoate, the use of hexanoate and heptanoate yielded higher-molecular-weight polymers. These copolyesters represent an entirely new class of biodegradable thermoplastics.

856 citations


Journal ArticleDOI
TL;DR: In this article, 16S rRNA-targeted oligonucleotide hybridization probes were developed to enumerate various strains of Bacteroides succinogenes and Lachnospira multiparus-like organisms in the bovine rumen before, during and after perturbation of that ecosystem by the addition of the ionophore antibiotic monensin.
Abstract: To address the long-standing need for more precise descriptions of natural microbial ecosystems, 16S rRNAs were used to track certain species and phylogenetically coherent groups of microorganisms in their natural setting without culturing. Species- and group-specific 16S rRNA-targeted oligonucleotide hybridization probes were developed to enumerate various strains of Bacteroides succinogenes and Lachnospira multiparus-like organisms in the bovine rumen before, during, and after perturbation of that ecosystem by the addition of the ionophore antibiotic monensin. Based on probe hybridization, relative numbers of L. multiparus-like organisms were depressed about 2-fold during monensin addition and demonstrated a transient 5- to 10-fold increase immediately after removal of the antibiotic from the diet. The most pronounced population changes were observed among different strains of B. succinogenes, as evaluated by three hybridization probes. One probe hybridized to all strains, whereas the other two identified genetically distinct groups represented by strains isolated from the rumen and from the ceca of nonruminants. The rumen-type strains predominated on most days (ca. 0.2 to 0.8% of total ribosome numbers). Their proportion transiently increased about fivefold immediately after the addition of monensin to the feed and then transiently fell below the average premonensin level. During this time (ca. 2 weeks after monensin addition) the cecal type predominated (ca. 0.1 to 0.2%). Cultural enumeration of B. succinogenes on nonselective agar and by observing clearings in cellulose agar media were largely unsuccessful due to the low number of organisms present and the predominance of other cellulolytic species.(ABSTRACT TRUNCATED AT 250 WORDS)

736 citations


Journal ArticleDOI
TL;DR: It is shown that the intermediate 3-Hydroxy fatty acids can also be polymerized to intracellular poly-(R)-3-hydroxyalkanoates (PHAs) when the medium contains limiting amounts of essential elements, such as nitrogen.
Abstract: Pseudomonas oleovorans grows on C(6) to C(12)n-alkanes and 1-alkenes. These substrates are oxidized to the corresponding fatty acids, which are oxidized further via the beta-oxidation pathway, yielding shorter fatty acids which have lost one or more C(2) units. P. oleovorans normally utilizes beta-oxidation pathway intermediates for growth, but in this paper we show that the intermediate 3-hydroxy fatty acids can also be polymerized to intracellular poly-(R)-3-hydroxyalkanoates (PHAs) when the medium contains limiting amounts of essential elements, such as nitrogen. The monomer composition of these polyesters is a reflection of the substrates used for growth of P. oleovorans. The largest monomer found in PHAs always contained as many C atoms as did the n-alkane used as a substrate. Monomers which were shorter by one or more C(2) units were also observed. Thus, for C-even substrates, only C-even monomers were found, the smallest being (R)-3-hydroxyhexanoate. For C-odd substrates, only C-odd monomers were found, with (R)-3-hydroxyheptanoate as the smallest monomer. 1-Alkenes were also incorporated into PHAs, albeit less efficiently and with lower yields than n-alkanes. These PHAs contained both saturated and unsaturated monomers, apparently because the 1-alkene substrates could be oxidized to carboxylic acids at either the saturated or the unsaturated ends. Up to 55% of the PHA monomers contained terminal double bonds when P. oleovorans was grown on 1-alkenes. The degree of unsaturation of PHAs could be modulated by varying the ratio of alkenes to alkanes in the growth medium. Since 1-alkenes were also shortened before being polymerized, as was the case for n-alkanes, copolymers which varied with respect to both monomer chain length and the percentage of terminal double bonds were formed during nitrogen-limited growth of P. oleovorans on 1-alkenes. Such polymers are expected to be useful for future chemical modifications.

714 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a protocol which yields purified bacterial DNA from the soil bacterial community, which was essentially pure as determined by UV spectral analysis, was at least 48 kilobases long, and was not subject to degradation, which indicated that there was no contaminating nuclease activity.
Abstract: We developed a protocol which yields purified bacterial DNA from the soil bacterial community. The bacteria were first dispersed and separated from soil particles in the presence of polyvinylpolypyrrolidone, which removes humic acid contaminants by adsorption to this insoluble polymer. The soil bacteria were then collected by centrifugation and lysed by using a comprehensive protocol designed to maximize disruption of the various types of bacteria present. Total bacterial DNA was purified from the cell lysate and remaining soil contaminants by using equilibrium density gradients. The isolated DNA was essentially pure as determined by UV spectral analysis, was at least 48 kilobases long, and was not subject to degradation, which indicated that there was no contaminating nuclease activity. The isolated DNA was readily digested by exogenously added restriction endonucleases and successfully analyzed by slot blot and Southern blot hybridizations. Using single-stranded, P-labeled DNA probes, we could detect and quantitate the presence of a specific microbial population in the natural soil community on the basis of the presence of a DNA sequence unique to that organism. The sensitivity of our methodology was sufficient to detect Bradyrhizobium japonicum at densities as low as 4.3 x 10 cells per g (dry weight) of soil, which corresponds to about 0.2 pg of hybridizable DNA in a 1-mug DNA sample.

599 citations


Journal ArticleDOI
TL;DR: Experiments showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria and the interaction of biocides with pipe surfaces provides important insights into strategies for control ofBiofilm bacteria.
Abstract: The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.

583 citations


Journal ArticleDOI
TL;DR: Evaluated procedures for recovering DNA from soil and sediment bacterial communities found that the use of polyvinylpolypyrrolidone was important for the removal of humic compounds to improve the purity of the recovered DNA; without extensive purification, various restriction enzymes failed to cut added target DNA.
Abstract: Experiments were performed to evaluate the effectiveness of two different methodological approaches for recovering DNA from soil and sediment bacterial communities: cell extraction followed by lysis and DNA recovery (cell extraction method) versus direct cell lysis and alkaline extraction to recover DNA (direct lysis method). Efficiency of DNA recovery by each method was determined by spectrophotometric absorbance and using a tritiated thymidine tracer. With both procedures, the use of polyvinylpolypyrrolidone was important for the removal of humic compounds to improve the purity of the recovered DNA; without extensive purification, various restriction enzymes failed to cut added target DNA. Milligram quantities of high-purity DNA were recovered from 100-g samples of both soils and sediments by the direct lysis method, which was a greater than 1-order-of-magnitude-higher yield than by the cell extraction method. The ratio of labeled thymidine to total DNA, however, was higher in the DNA recovered by the cell extraction method. than by the direct lysis method, suggesting that the DNA recovered by the cell extraction method came primarily from active bacterial cells, whereas that recovered by the direct lysis method may have contained DNA from other sources.

501 citations


Journal ArticleDOI
TL;DR: The polyethylene glycol method was shown to be more effective than the organic flocculation method for recovery of hepatitis A virus and rotaviruses Wa and SA11, but not of poliovirus 1 in laboratory studies.
Abstract: Polyethylene glycol 6000 precipitation was found to be an effective concentration method that enhanced the chances for detecting human virus pathogens in environmental samples. Percent recoveries from eluates of fresh and estuarine waters with 8% polyethylene glycol 6000 averaged 86 for hepatitis A virus, 77 for human rotavirus Wa, 87 for simian rotavirus SA11, and 68 for poliovirus. Percent recoveries of 97, 40, 97 and 105, respectively, for the same viruses were obtained from oyster eluates by the same procedure. Percent recoveries of 97 for hepatitis A virus and 78 for human rotavirus Wa were obtained from sediment eluates containing 2 M NaNO3 with a final concentration of 15% polyethylene glycol 6000. The polyethylene glycol method was shown to be more effective than the organic flocculation method for recovery of hepatitis A virus and rotaviruses Wa and SA11, but not of poliovirus 1 in laboratory studies. In field trials, hepatitis A virus or rotavirus or both were recovered from 12 of 18 eluates by polyethylene glycol, compared with recovery from 9 of 18 eluates by organic flocculation from fresh and estuarine waters subject to pollution.

410 citations


Journal ArticleDOI
TL;DR: This paper showed that the attachment of bacteria to surfaces provided the greatest increase in disinfection resistance, and the choice of disinfectant residual was shown to influence the type of resistance mechanism observed.
Abstract: Results of our experiments showed that the attachment of bacteria to surfaces provided the greatest increase in disinfection resistance. Attachment of unencapsulated Klebsiella pneumoniae grown in medium with high levels of nutrients to glass microscope slides afforded the microorganisms as much as a 150-fold increase in disinfection resistance. Other mechanisms which increased disinfection resistance included the age of the biofilm, bacterial encapsulation, and previous growth conditions (e.g., growth medium and growth temperature). These factors increased resistance to chlorine from 2- to 10-fold. The choice of disinfectant residual was shown to influence the type of resistance mechanism observed. Disinfection by free chlorine was affected by surfaces, age of the biofilm, encapsulation, and nutrient effects. Disinfection by monochloramine, however, was only affected by surfaces. Importantly, results showed that these resistance mechanisms were multiplicative (i.e., the resistance provided by one mechanism could be multiplied by the resistance provided by a second mechanism).

403 citations


Journal ArticleDOI
TL;DR: Bacterial enumeration and histologic examination of organs and tissues of 8-day-old chicks 7 days after peroral inoculation with Campylobacter jejuni revealed that the organism colonized primarily the lower gastrointestinal tract.
Abstract: Bacterial enumeration and histologic examination of organs and tissues of 8-day-old chicks 7 days after peroral inoculation with Campylobacter jejuni revealed that the organism colonized primarily the lower gastrointestinal tract The principal sites of localization were the ceca, large intestine, and cloaca, where densely packed cells of C jejuni were observed in mucus within crypts Examination of C jejuni-colonized crypts by transmission electron microscopy revealed that the campylobacters freely pervaded the lumina of crypts without attachment to crypt microvilli Understanding the mechanism of colonization may lead to approaches that will reduce the incidence of C jejuni carriage by poultry

Journal ArticleDOI
TL;DR: It is proposed that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments.
Abstract: The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments.

Journal ArticleDOI
TL;DR: A novel photochemical sterilization system in which Escherichia coli cells were sterilized with TiO2-immobilized acetylcellulose membrane reactor, a mercury lamp, and a masterflex pump, and it was found that this system was reusable.
Abstract: We report a novel photochemical sterilization system in which Escherichia coli cells were sterilized with photosemiconductor powders (titanium oxide). For sterilization that could be used in practice, it was necessary to separate the TiO2 powders from the cell suspension. Therefore, semiconductor powders were immobilized on acetylcellulose membranes. We constructed a continuous-sterilization system consisting of a TiO2-immobilized acetylcellulose membrane reactor, a mercury lamp, and a masterflex pump. As a result, under the various sterilization conditions examined, E. coli (10(2) cells per ml) was sterilized to less than 1% survival when the cell suspension flowed in this system at a mean residence time of 16.0 min under irradiation (1,800 microeinsteins/m2 per s). We found that this system was reusable.

Journal ArticleDOI
TL;DR: It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products.
Abstract: Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products.

Journal ArticleDOI
TL;DR: A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo, and a spontaneous revertant selected from a tod C culture regained simultaneously the abilities to oxidizing toluenes, to form indigo and to degradetrichlorOethylene.
Abstract: Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.

Journal ArticleDOI
TL;DR: It appeared that, under carbon-and energy-limited conditions, a high nitrification rate was correlated with a reduced biomass yield, and several species considered to be "poor" nitrifiers also simultaneously nitrify and denitrify, thus giving a falsely low nitrification potential.
Abstract: Thiosphaera pantotropha is capable of simultaneous heterotrophic nitrification and aerobic denitrification. Consequently, its nitrification potential could not be judged from nitrite accumulation, but was estimated from complete nitrogen balances. The maximum rate of nitrification obtained during these experiments was 93.9 nmol min−1 mg of protein−1. The nitrification rate could be reduced by the provision of nitrate, nitrite, or thiosulfate to the culture medium. Both nitrification and denitrification increased as the dissolved oxygen concentration fell, until a critical level was reached at approximately 25% of air saturation. At this point, the rate of (aerobic) denitrification was equivalent to the anaerobic rate. At this dissolved oxygen concentration, the combined nitrification and denitrification was such that cultures receiving ammonium as their sole source of nitrogen appeared to become oxygen limited and the nitrification rate fell. It appeared that, under carbon-and energy-limited conditions, a high nitrification rate was correlated with a reduced biomass yield. To facilitate experimental design, a working hypothesis for the mechanism behind nitrification and denitrification by T. pantotropha was formulated. This involved the basic assumption that this species has a “bottleneck” in its cytochrome chain to oxygen and that denitrification and nitrification are used to overcome this. The nitrification potential of other heterotrophic nitrifiers has been reconsidered. Several species considered to be “poor” nitrifiers also simultaneously nitrify and denitrify, thus giving a falsely low nitrification potential.

Journal ArticleDOI
TL;DR: PCR performed after bacterial DNA was isolated from sediment samples permitted the detection of as few as 100 cells of P. cepacia AC1100 per 100 g of sediment sample against a background of 10(11) diverse nontarget organisms, representing a 10(3)fold increase in sensitivity compared with nonamplified samples.
Abstract: The polymerase chain reaction (PCR) was performed to amplify a 1.0-kilobase (kb) probe-specific region of DNA from the herbicide-degrading bacterium Pseudomonas cepacia AC1100 in order to increase the sensitivity of detecting the organism by dot-blot analysis. The 1.0-kb region was an integral portion of a larger 1.3-kb repeat sequence which is present as 15 to 20 copies on the P. cepacia AC1100 genome. PCR was performed by melting the target DNA, annealing 24-base oligonucleotide primers to unique sequences flanking the 1.0-kb region, and performing extension reactions with DNA polymerase. After extension, the DNA was again melted, and the procedure was repeated for a total of 25 to 30 cycles. After amplification the reaction mixture was transferred to nylon filters and hybridized against radiolabeled 1.0-kb fragment probe DNA. Amplified target DNA was detectable in samples initially containing as little as 0.3 pg of target. The addition of 20 micrograms of nonspecific DNA isolated from sediment samples did not hinder amplification or detection of the target DNA. The detection of 0.3 pg of target DNA was at least a 10(3)-fold increase in the sensitivity of detecting gene sequences compared with dot-blot analysis of nonamplified samples. PCR performed after bacterial DNA was isolated from sediment samples permitted the detection of as few as 100 cells of P. cepacia AC1100 per 100 g of sediment sample against a background of 10(11) diverse nontarget organisms; that is, P. cepacia AC1100 was positively detected at a concentration of 1 cell per g of sediment. This represented a 10(3)-fold increase in sensitivity compared with nonamplified samples.

Journal ArticleDOI
TL;DR: The degradation of pyrene by pure cultures of a Mycobacterium sp.
Abstract: The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of [14C]pyrene was mineralized to CO2 after 96 h of incubation at 24 degrees C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that accounted for 95% of the total organic-extractable 14C-labeled residues. Analyses by UV, infrared, mass, and nuclear magnetic resonance spectrometry and gas chromatography identified both pyrene cis- and trans-4,5-dihydrodiols and pyrenol as initial microbial ring-oxidation products of pyrene. The major metabolite, 4-phenanthroic acid, and 4-hydroxyperinaphthenone and cinnamic and phthalic acids were identified as ring fission products. 18O2 studies showed that the formation of cis- and trans-4,5-dihydrodiols were catalyzed by dioxygenase and monooxygenase enzymes, respectively. This is the first report of the chemical pathway for the microbial catabolism of pyrene.

Journal ArticleDOI
TL;DR: The attachment of the conidia of the insect-pathogenic fungi Nomuraea rileyi, Beauveria bassiana, and Metarrhizium anisopliae to insect cuticle was mediated by strong binding forces and the hydrophobicity of the Conidium wall and the insect epicuticle appeared to mediate the adhesion process.
Abstract: The attachment of the conidia of the insect-pathogenic fungi Nomuraea rileyi, Beauveria bassiana , and Metarrhizium anisopliae to insect cuticle was mediated by strong binding forces. The attachment was passive and nonspecific in that the conidia adhered readily to both host and nonhost cuticle preparations. The hydrophobicity of the conidial wall and the insect epicuticle appeared to mediate the adhesion process. Detergents, solvents, and high-molecular-weight proteins known to neutralize hydrophobicity reduced conidial binding when added to conidium-cuticle preparations. However, these chemicals did not remove the hydrophobic components from the epicuticle or from conidial preparations. The outer surface of the conidium consists of a resilient layer of well-organized fascicles of rodlets. Intact rodlets extracted from B. bassiana conidia bound to insect cuticle and exhibited the hydrophobicity expressed by intact conidia. Both electrostatic charges and various hemagglutinin activities were also present on the conidial surface. However, competitive-inhibition studies indicated that these forces played little, if any, role in the adhesion process. Images

Journal ArticleDOI
TL;DR: A simple technique for the high-yield extraction of purified DNA from mixed populations of natural planktonic marine microbes (primarily bacteria) is developed, and most of the final preparation had a large molecular size (>23 kilobase pairs).
Abstract: We developed a simple technique for the high-yield extraction of purified DNA from mixed populations of natural planktonic marine microbes (primarily bacteria). This is a necessary step for several molecular biological approaches to the study of microbial communities in nature. The microorganisms from near-shore marine and brackish water samples, ranging in volume from 8 to 40 liters, were collected on 0.22-μm-pore-size fluorocarbon-based filters, after prefiltration through glass fiber filters, to remove most of the eucaryotes. DNA was extracted directly from the filters in 1% sodium dodecyl sulfate that was heated to 95 to 100°C for 1.5 to 2 min. This procedure lysed essentially all the bacteria and did not significantly denature the DNA. The DNA was purified by phenol extraction, and precautions were taken to minimize shearing. Agarose gel electrophoresis showed that most of the final preparation had a large molecular size (>23 kilobase pairs). The DNA was sufficiently pure to allow complete digestion by the restriction endonuclease Sau3AI and ligation to vector DNA. In a sample in which the extracted DNA was quantified by binding to the dye Hoechst H33258, DNA was quantitatively extracted, and 45% of the initially extracted DNA was recovered after purification. Final yields were a few micrograms of DNA per liter of seawater and were roughly 25 to 50% of the total bacterial DNA in the sample. Alternatives to the initial harvest by filtration method, including continuous-flow centrifugation and thin-channel or hollow-fiber concentration followed by centrifugation, were less efficient than filtration in terms of both time and yield, largely because of the difficulty of centrifuging the very small bacteria typical of marine plankton. These methods were judged to be less appropriate for studies of natural populations as they impose a strong selection for the larger bacteria. Images

Journal ArticleDOI
TL;DR: Biodegradation of PCP was decreased in nutrient nitrogen-sufficient cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed.
Abstract: Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).

Journal ArticleDOI
TL;DR: This is the first report of a lignin peroxidase in a bacterium designated as ALiP-P3 and characterizations showed that this enzyme is a heme protein (Soret band, 408 nm) and a major component of the ligninolytic system of S. viridosporus T7A.
Abstract: Previously we reported production of an extracellular lignin-inducible peroxidase by Streptomyces viridosporus (M. Ramachandra, D.L. Crawford, and A.L. Pometto III, Appl. Environ. Microbiol. 53:2754-2760, 1987). This peroxidase was shown to oxidize 3,4-dihydroxyphenylalanine, 2,4-dichlorophenol, homoprotocatechuic acid, caffeic acid, and N,N,N',N'-tetramethylphenylenediamine and was found in higher than normal levels in strains enhanced for lignocellulose degradation. In the present study, we used a pure extracellular enzyme preparation with high peroxidase isoform P3 activity to oxidize lignin substructure model compounds of both the 1,2-diaryl propane and arylglycerol-beta-aryl ether types and containing C alpha-carbonyl and C alpha-hydroxyl groups. The reactions were monitored by gas chromatography-mass spectrometry and high-pressure liquid chromatography techniques. In the presence, but not the absence, of hydrogen peroxide, the enzyme preparation catalyzed C alpha-C beta bond cleavage in the side chains of the diaryl ethers 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) and 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propan-1-one (II) and the diaryl ethane 1-(4-methoxyphenyl)-2-(phenyl)ethan-1-one (III). Rapid hydrogen peroxide consumption was observed when the enzyme preparation was added to either milled corn lignin or lignocellulose. Additional characterizations showed that this enzyme is a heme protein (Soret band, 408 nm) and a major component of the ligninolytic system of S. viridosporus T7A. This is the first report of a lignin peroxidase in a bacterium. We have designated this new lignin peroxidase as ALiP-P3.

Journal ArticleDOI
TL;DR: The ability of the laccase to alter the toxicity of the phenols appeared to be related to the capacity of the enzyme to decrease the levels of the parent compound by transformation or cross-coupling with another phenol.
Abstract: The ability of a polyphenoloxidase, the laccase of the fungus Rhizoctonia praticola, to detoxify phenolic pollutants was examined The growth of the fungus could be inhibited by phenolic compounds, and the effective concentration was dependent on the substituents of the phenol A toxic amount of a phenolic compound was added to a fungal growth medium in the presence or absence of a naturally occurring phenol, and half of the replicates also received laccase The medium was then inoculated with R praticola, and the levels of phenols in the medium were monitored by high-performance liquid chromatography analysis The addition of the laccase reversed the inhibitory effect of 2,6-xylenol, 4-chloro-2-methylphenol, and p-cresol Other compounds, eg, o-cresol and 2,4-dichlorophenol, were detoxified only when laccase was used in conjunction with a natural phenol such as syringic acid The toxicity of p-chlorophenol and 2,4,5-trichlorophenol could not be overcome by any additions The ability of the laccase to alter the toxicity of the phenols appeared to be related to the capacity of the enzyme to decrease the levels of the parent compound by transformation or cross-coupling with another phenol

Journal ArticleDOI
TL;DR: The finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium is suggested, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.
Abstract: Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.

Journal ArticleDOI
TL;DR: The first report of a bacterium able to extensively mineralize pyrene and other polycyclic aromatic hydrocarbons containing four aromatic rings was reported in this article. But pyrene degradation enzymes were inducible in this Mycobacterium sp.
Abstract: Microbiological analyses of sediments located near a point source for petrogenic chemicals resulted in the isolation of a pyrene-mineralizing bacterium. This isolate was identified as a Mycobacterium sp. on the basis of its cellular and colony morphology, gram-positive and strong acid-fast reactions, diagnostic biochemical tests, 66.6% G + C content of the DNA, and high-molecular-weight mycolic acids (C58 to C64). The mycobacterium mineralized pyrene when grown in a mineral salts medium supplemented with nutrients but was unable to utilize pyrene as a sole source of carbon and energy. The mycobacterium grew well at 24 and 30 degrees C and minimally at 35 degrees C. No growth was observed at 5 or 42 degrees C. The mycobacterium grew well at salt concentrations up to 4%. Pyrene-induced Mycobacterium cultures mineralized 5% of the pyrene after 6 h and reached a maximum of 48% mineralization within 72 h. Treatment of induced and noninduced cultures with chloramphenicol showed that pyrene-degrading enzymes were inducible in this Mycobacterium sp. This bacterium could also mineralize other polycyclic aromatic hydrocarbons and alkyl- and nitro-substituted polycyclic aromatic hydrocarbons including naphthalene, phenanthrene, fluoranthene, 3-methylcholanthrene, 1-nitropyrene, and 6-nitrochrysene. This is the first report of a bacterium able to extensively mineralize pyrene and other polycyclic aromatic hydrocarbons containing four aromatic rings.

Journal ArticleDOI
TL;DR: Microbiological analyses of sediments chronically exposed to petrogenic hydrocarbons resulted in the isolation of a gram-positive, rod-shaped bacterium which mineralized naphthalene, phenanthrene, fluoranthene, pyrene, and 1-nitropyrene to carbon dioxide when grown for 2 weeks in pure culture with organic nutrients.
Abstract: Microbiological analyses of sediments chronically exposed to petrogenic hydrocarbons resulted in the isolation of a gram-positive, rod-shaped bacterium which mineralized naphthalene (59.5% of the original amount), phenanthrene (50.9%), fluoranthene (89.7%), pyrene (63.0%), 1-nitropyrene (12.3%), 3-methylcholanthrene (1.6%), and 6-nitrochrysene (2.0%) to carbon dioxide when grown for 2 weeks in pure culture with organic nutrients. The bacterium tolerated salt concentrations up to 4% and grew well at 24 to 30 degrees C. The use of this bacterium may be an attractive alternative to existing physicochemical methods for the remediation of polycyclic aromatic hydrocarbons in the environment. Images

Journal ArticleDOI
TL;DR: A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.
Abstract: Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO(2) and either ethanol or lactate but not H(2) gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO(2) reduction, with a formate production rate and methanogenic turnover constant of 660 muM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 muM) than digestor contents, and the free flora was the primary site for formate cleavage to CO(2) and H(2) (90 muM formate per h). Inhibition of methanogenesis by CHCl(3) resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H(2) gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H(2) transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.

Journal ArticleDOI
TL;DR: The bacteriocin produced by Pediococcus acidilactici PAC 1.0, previously designated PA-1 bacteriOCin, was found to be inhibitory and bactericidal for Listeria monocytogenes.
Abstract: The bacteriocin produced by Pediococcus acidilactici PAC 1.0, previously designated PA-1 bacteriocin, was found to be inhibitory and bactericidal for Listeria monocytogenes. A dried powder prepared from PAC 1.0 culture supernatant fortified with 10% milk powder was found to contain bacteriocin activity. An MIC against L. monocytogenes and lytic effects in broth cultures were determined. Inhibition by PA-1 powder occurred over the pH range 5.5 to 7.0 and at both 4 and 32 degrees C. In addition, inhibition of L. monocytogenes was demonstrated in several food systems including dressed cottage cheese, half-and-half cream, and cheese sauce.

Journal ArticleDOI
TL;DR: Common methods of treatment of plant samples prior to sterol extraction led to reduced recoveries of ergosterol, but the least destructive method was direct placement and storage in methanol.
Abstract: Portions of published procedures for measurement of ergosterol content of decomposing plants were examined for their influence upon ergosterol yield. Common methods of treatment of plant samples prior to sterol extraction (e.g., oven drying, freezing, lyophilization) led to reduced recoveries of ergosterol (ca. 20 to 80%). The least destructive method was direct placement and storage in methanol. Photoconversion of ergosterol is not likely to cause losses during analysis, but losses are likely if there is insufficient mixing during neutral-lipid partitioning from base-hydrolysis reagents. Homogenization (two times for 2 min) and refluxing (2 h) in methanol were equally effective in extracting ergosterol. Direct extraction in base-hydrolysis reagents was less effective (by ca. 40%).

Journal ArticleDOI
TL;DR: Data provide further evidence that sulfated polysaccharides such as mucin may be a source of sulfate for SRB in the human large gut.
Abstract: A mixed culture of human fecal bacteria was grown for 120 days in a three-stage continuous culture system. To reproduce some of the nutritional and pH characteristics of the large gut, each vessel had a different operating volume (0.3, 0.5, and 0.8 liter) and pH (6.0, 6.5, and 7.0). A mixture of polysaccharides and proteins was used as carbon and nitrogen sources. Measurements of H2, CH4, S2-, sulfate reduction rates, sulfate-reducing bacteria (SRB), and volatile fatty acids were made throughout the experiment. After 48 days of running, porcine gastric mucin (5.8 g/day) was independently fed to vessel 1 of the multichamber system. The mucin was extensively degraded as evidenced by the stimulation of volatile fatty acid production. In the absence of mucin, sulfate-reducing activity was comparatively insignificant and methanogenesis was the major route for the disposal of electrons. The reverse occurred upon the addition of mucin; sulfate reduction predominated and methanogenesis was completely inhibited. This was attributed to release of sulfate from the mucin which enabled SRB to outcompete methanogenic bacteria for H2. SRB stimulated by mucin were acetate-utilizing Desulfobacter spp., lactate- and H2-utilizing Desulfovibrio spp., and propionate-utilizing Desulfobulbus spp. When the mucin pump was switched off, the multichamber system reverted to a state close to its original equilibrium. These data provide further evidence that sulfated polysaccharides such as mucin may be a source of sulfate for SRB in the human large gut.