scispace - formally typeset
Search or ask a question

Showing papers in "Australian Journal of Plant Physiology in 1996"


Journal ArticleDOI
TL;DR: It is concluded that drought, particularly when combined with high temperature, is more likely than heat stress to cause large reductions in grain weight of barley under field conditions.
Abstract: Short periods (3-5 days) of high maximum temperature (>35oC), often accompanied by drought, commonly occur during grain filling of cereals. Short periods of high temperature have been shown to reduce grain weight and baking quality in wheat, but little is known about their effects on barley. Consequently, we examined the effects of high temperature and drought, alone or combined, on grain growth for two barley cultivars, Schooner and Franklin. Treatments started 15 days after anthesis and consisted of the factorial combination of three temperatures and three water regimes. The high temperature (maximum 40oC for 6 h day-1) and drought treatments were maintained for 5 or 10 days. Drought reduced individual grain weight much more (ca 20%) than high temperature (ca 5%) for both cultivars. Franklin appeared to be more sensitive to heat stress than Schooner. The reduction in individual grain weight was greatest when both stresses were combimed (ca 30%). The reduction in mature grain weight under high temperature was due to a reduction in duration of grain growth for Schooner and to a reduction in both rate and duration of grain growth for Franklin (8-12%). The reduction in duration of grain growth was the most important cause of reduced grain weight at maturity under drought alone (12-25%) or combined with high temperature (25-33%). Nitrogen content per grain was quite high and similar for all treatments, and nitrogen percentage increased when stress was severe enough to reduce starch accumulation, confirming that starch accumulation is more sensitive to post- anthesis stress than nitrogen accumulation. We conclude that drought, particularly when combined with high temperature, is more likely than heat stress to cause large reductions in grain weight of barley under field conditions.

262 citations


Journal ArticleDOI
TL;DR: Growth effects were closely matched by changes in sink development, suggesting that sink strength, mediated through N supply controlled the shoot growth response to elevated CO2.
Abstract: The influence of elevated CO2 (350, 550 and 900 μL L-1) and N supplies ranging from deficient to excess (0-133 mg N kg-1 soil week-1) on the leaf N concentration and shoot growth of wheat (Triticum aestivum L.), cultivar Hartog, was investigated. Shoot growth was 30 % greater at 550 μL L-1 compared to ambient CO2 at all levels of N supply. When the CO2 concentration was increased to 900 μL L-1, there was no increase in shoot growth at low N supply but it more than doubled at high N supply (67 mg N kg-1 soil week-1). Growth effects were closely matched by changes in sink development, suggesting that sink strength, mediated through N supply controlled the shoot growth response to elevated CO2. The shoot N concentration was lower at each level of CO2 enrichment and the greatest effect (30% reduction) occurred at 900 μL CO2 L-1, 33 mg N kg-1 soil week-1. The effect of high CO2 on shoot N concentration diminished as N supply increased and, at the highest N addition rate, there was only a 7% reduction. Changes in foliar N concentration due to CO2 enrichment were closely correlated with lower soluble protein concentration, accounting for 58 % of the total leaf N reduction. Ribulose- IS-bisphosphate carboxylase/oxygenase (Rubisco) levels were also reduced at high CO2 and N was allocated away from Rubisco and into other soluble proteins at high CO2 when N supply was low. Non- structural carbohydrate concentration (dry weight basis) was greatest at 900 μL CO2 L-1 and low N supply and may have reduced Rubisco concentration via a feed-back response. Critical foliar N concentrations (N concentration at 90 % of maximum shoot growth) were reduced from 43 mg g-1 at ambient CO2 to 39 and 38 mg g-1 at 550 and 900 μL CO2 L-1, respectively. Elevated CO2, at N supplies of 0-17 mg N kg-1 soil week-1, reduced flour protein concentration by 9-13 %.

163 citations


Journal ArticleDOI
TL;DR: Due to higher rates of ecosystem respiration, recycling of respired CO2 is modelled to be much greater for tropical rainforest, but values presented here are considerably lower than previously published estimates, the latter being based solely on the relationship between the isotopic composition and concentrations of CO2 within forest canopies.
Abstract: In order to understand the factors influencing the isotopic composition of air above and within plant canopies, equations quantifying the effects of photosynthesis, respiration and turbulent transport on the isotopic composition of the surrounding CO2 are developed. These equations are then extended to the regional scale, allowing the average isotopic composition of CO2 within the convective boundary layer to be related to the isotopic composition of tropospheric CO2, and to isotopic fractionations during ecosystem carbon exchange. Equations presented have the potential to be inverted, allowing direct estimation of isotopic fractionations by vegetation at the local and regional scales. Equations allowing the estimation of the extent of refixation of respired CO2 ('recycling') at the regional scale are also presented. Using measurements of CO2 carbon isotopic composition in conjunction with ecosystem flux measurements, the theory is applied to a tropical rain forest in Amazonia and a boreal forest in Siberia. When examined on a ground area basis and over the course of a day it is observed that, by virtue of greater fluxes but similar isotopic fractionations, the tropical rainforest exerts much more influence over the isotopic composition of the surrounding air than does the boreal forest. Due to higher rates of ecosystem respiration, recycling of respired CO2 is modelled to be much greater for tropical rainforest, but values presented here are considerably lower than previously published estimates, the latter being based solely on the relationship between the isotopic composition and concentrations of CO2 within forest canopies. The reasons for these differences are examined.

161 citations


Journal ArticleDOI
TL;DR: The results indicate that maintenance of a high shoot water status reduces the effect of soil water deficit on grain set by reducing the accumulation of ABA.
Abstract: Chemical signals from roots have been shown to mediate the response of vegetative shoots to drought. Our objective was to test whether root signals such as abscisic acid (ABA) affect grain set in wheat. Uniculm wheat was grown in a controlled environment and exposed to a water deficit from pollen mother cell meiosis to late boot stage-a period of reproductive development very sensitive to drought. The water deficit decreased grain numbers per spike up to 70%. As soil moisture was depleted, leaf, glume, ovary and anther water potential (Ψw) decreased with leaf Ψw. Turgor decreased in the leaves, but remained at or above control levels in all floral organs examined. Free ABA content of leaves increased 30-fold as leaf turgor declined, while ABA in floral organs increased 10-15-fold. To separate the effects of shoot and root water status on grain set, plants were pressurised to maintain leaf Ψw at control levels as the soil dried. Pressurisation increased flowers and grains per spike over that of droughted plants at comparable soil water suctions, but not to control levels. Free ABA content in leaves and floral organs increased only about 3-fold when leaves were maintained at high Ψw. Shoot water status had a greater effect on grain set than did soil water status. In both pressurised and unpressurised plants, grains per spike and percentage grain set decreased with increasing ABA content in ovaries and anthers. The results indicate that maintenance of a high shoot water status reduces the effect of soil water deficit on grain set by reducing the accumulation of ABA.

113 citations



Journal ArticleDOI
TL;DR: Findings are consistent with an increased emphasis on energy dissipation over light collection with increasing light stress, afforded presumably by a decreased ratio of major, peripheral (bulk chlorophyll-binding) to minor, proximal (xanthophyll cycle-rich) light-harvesting complexes of photosystem II.
Abstract: The response of carotenoid and chlorophyll composition to the actual degree of excess light experienced in the natural environment was examined in differently angled leaves of the sclerophyllous shrub Euonymus kiautschovicus. Increasing light stress caused a greater conversion of the xanthophyll cycle to zeaxanthin and antheraxanthin as well as thermal dissipation of a greater fraction of the absorbed light. Increasing light stress was also associated with increasing chlorophyll alb ratios and increases in the pool size of the xanthophyll cycle. The response of all other carotenoids to light stress was less pronounced than that of the xanthophyll cycle pool. While the ratio of β-carotene or lutein to chlorophyll increased with increasing light stress, the ratio of neoxanthin to chlorophyll remained constant. Only the (taxonomically restricted) carotenoids lactucaxanthin and ±-carotene decreased relative to chlorophyll with increasing light stress. These findings are consistent with an increased emphasis on energy dissipation over light collection with increasing light stress, afforded presumably by a decreased ratio of major, peripheral (bulk chlorophyll-binding) to minor, proximal (xanthophyll cycle-rich) light-harvesting complexes of photosystem II. These responses to light stress within a single species could not be extrapolated to comparisons among different groups of species.

105 citations


Journal ArticleDOI
TL;DR: Data from this experiment suggest that competitiveness could be enhanced in a C3 crop (rice) relative to a C4 weed (E. glabrescens) with elevated CO2 alone, but that simultaneous increases in CO2 and temperature could still favour a C 4 species.
Abstract: Many of the most troublesome weeds in agricultural systems are C4 plants. As atmospheric CO2 increases it is conceivable that competitive ability of these weeds could be reduced relative to C3 crops such as rice. At the International Rice Research Institute (IRRI) in the Philippines, rice (IR72) and one of its associated C4 weeds, Echinochloa glabrescens, were grown from seeding to maturity using replacement series mixtures (100:0, 75:25, 50:50, 25:75, and 0:100, % rice:%weed) at two different CO2 concentrations (393 and 594 μL L-1) in naturally sunlit glasshouses. Since increasing CO2 may also result in elevated growth temperatures, the response of rice to each CO2 concentration was also examined at daylnight temperatures of 27/21 and 37/29oC. At 27/21oC, increasing the CO2 concentration resulted in a significant increase in above ground biomass (+47%) and seed yield (+55%) of rice when averaged over all mixtures. For E. glabrescens, the C4 species, no significant effect of CO2 concentration on biomass or yield was observed. When grown in mixture, the proportion of rice biomass increased significantly relative to that of the C4 weed at all mixtures at elevated CO2. Evaluation of changes in competitiveness (by calculation of plant relative yield (PRY) and replacement series diagrams) of the two species demonstrated that, at elevated CO2, the competitiveness of rice was increased relative to that of E. glabrescens. However, at the higher growth temperature (37/29oC), growth and reproductive stimulation of rice by elevated CO2 was reduced compared to the lower growth temperature. This resulted in a reduction in the proportion of rice:weed biomass present in all mixtures relative to 27/21oC and a greater reduction in PRY in rice relative to E. glabrescens. Data from this experiment suggest that competitiveness could be enhanced in a C3 crop (rice) relative to a C4 weed (E. glabrescens) with elevated CO2 alone, but that simultaneous increases in CO2 and temperature could still favour a C4 species.

77 citations


Journal ArticleDOI
TL;DR: Experiments show that EPS synthesis is essential for the induction of rapid root hair curling, proper infection thread formation and the ability to sustain the growth of induced nodules on various clovers.
Abstract: The biological and symbiotic properties of two types of exopolysaccharide deficient (Exo- phenotype) mutants of Rhizobium leguminosarum were investigated. One mutant, a pss1 derivative (ANU437) of R. l. bv. trifolii, produces very low levels of acidic exopolysaccharide (EPS) and of the acidic oligosaccharide (AOS) repeating unit lacking its O-acetyl substituent. The second strain, originally a R. I. bv. viciae derivative, but containing a clover pSym plasmid (Exo-1 mutant ANU54(pBRIAN)), did not produce any EPS polymer or detectable oligosaccharide repeating unit. The Exo- mutants formed no capsules and their growth in laboratory media was comparable to their parent strains but was inhibited by the addition of the phytoalexins medicarpin and kievitone, but not by the phytoalexin pisatin. Both Exo- mutants were slow to induce clover root hair curling (Hac+), and formed growing infection threads (Inf-) only on white clovers. However, the extent of these early symbiotic defects depended on the plant growth conditions used. Both mutants induced small non-nitrogen-fixing (Fix-) nodules on white and subterranean clovers. Within the white clover nodules induced by mutant ANU437, bacteria were released into plant cells. On white clovers at elevated light and temperature conditions, the Exo-1 mutant ANU54(pBRIAN) usually failed to initiate infection threads and thus formed empty nodules which do not contain any bacteria. In addition, this mutant formed only empty nodules without infection threads on subterranean clovers under all growth conditions tested. The outermost layers of plant cells in these empty nodules had thickened cell walls and deposited materials. These experiments show that EPS synthesis is essential for the induction of rapid root hair curling, proper infection thread formation and the ability to sustain the growth of induced nodules on various clovers.

74 citations


Journal ArticleDOI
TL;DR: It is concluded that resistance to haloxyfop in this resistant biotype of L. rigidum is inherited as a single nuclear incompletely dominant gene coding for a resistant form of the target enzyme ACCase.
Abstract: The mechanism and mode of inheritance of resistance to acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides was investigated in a biotype of Lolium rigidum that has evolved resistance following selection with diclofop-methyl for 10 consecutive years. ACCase extracted from the resistant biotype is > 6.9 times more resistant to inhibition by diclofop than enzyme from a susceptible biotype. Similar or greater levels of resistance were found to other related herbicides. There is no difference in absorption or metabolism of diclofop-methyl or haloxyfop-methyl between the resistant and susceptible biotypes, hence differential absorption or metabolism of these herbicides does not contribute to resistance. F1 families from reciprocal crosses between the resistant biotype and a susceptible biotype respond similarly to the herbicide and are nearly as resistant as the resistant parent, indicating that the resistance trait is nuclearly located and has incomplete dominance over susceptibility. F2 families treated with 26 and 208 g ai ha-1 of haloxyfop-ethoxyethyl reveal only two phenotypes: resistant plants showing no injury and susceptible plants showing no growth. At both rates of haloxyfop-ethoxyethyl, the segregation of resistance to susceptibility follows a ratio of 3:1 (R:S) that fits the predicted ratio for a single nuclear gene with high dominance. From the F1 and F2 data, it is concluded that resistance to haloxyfop in this resistant biotype of L. rigidum is inherited as a single nuclear incompletely dominant gene coding for a resistant form of the target enzyme ACCase.

74 citations


Journal ArticleDOI
TL;DR: Variation in photosynthetic capacity can account for genotypic variation in both Δ and RGR during vegetative growth in sunflower, indicating that faster growing sunflower genotypes have higher rates of photosynthesis and use water more efficiently.
Abstract: A previous study showed that carbon isotope discrimination (Δ) was negatively related to transpiration efficiency (W, the ratio of dry matter accumulation to transpiration) and biomass accumulation amongst sunflower (Helianthus annuus L.) genotypes. Three experiments which explore the physiological basis of relationships between Δ, relative growth rate (RGR) and leaf gas exchange characteristics are reported. Growth was analysed on seven genotypes during the early vegetative stage (up to 31 days after emergence). Carbon isotope discrimination, Δ, W, and photosynthetic CO2 assimilation rate per unit leaf area (A) at ambient concentration of CO2 were measured on plants that made up the final harvest. Six of the seven genotypes were also grown under a low nitrogen (N) regime and harvested at 30 days after emergence. Carbon isotope discrimination was negatively related to relative growth rate (RGR), net assimilation rate (NAR) and photosynthetic rate per unit area, which in turn, were all positively correlated with each other. Genotypic variation inA (51%) was greater than that in leaf conductance, g (32%) and there was no relationship between g and Δ. Under the low N regime, A and g declined by 33 and 12%, respectively, across all genotypes producing a significant rise in A of 1.10. In a second experiment, growth analysis on 13 cultivated forms of H. annuus, a wild accession and a H. argophyllus accession, also showed that there was a positive relationship between RGR and NAR, and that both growth indices were negatively related to Δ. In a further experiment, using 14 genotypes (including the wild accession) there was a highly significant negative correlation (r = -0.85, P < 0.001) between photosynthetic capacity, measured using an oxygen electrode, and Δ. These results indicate that variation in photosynthetic capacity can account for genotypic variation in both Δ and RGR during vegetative growth in sunflower. Hence, faster growing sunflower genotypes have higher rates of photosynthesis and use water more efficiently.

73 citations


Journal ArticleDOI
TL;DR: Both photosynthetic and stomatal loop gains acclimated to elevated CO2 in proportion so that their ratio, integrated over the range of Ci in which the plant operates, remained constant.
Abstract: Acclimation of stomatal conductance to different CO2 and temperature regimes was determined in Chenopodium album L. plants grown at one of three treatment conditions: 23oC and 350 μmol CO2 mol-1 air; 34oC and 350 μmol mol-1; and 34oC and 750 μmol mol-1. Stomatal conductance (gs) as a function of intercellular CO2 (Ci) was determined for each treatment at 25 and 35oC, and these data were used to estimate gains of the feedback loops linking changes in intercellular CO2 with stomatal conductance and net CO2 assimilation. Growth temperature affected the sensitivity of stomata to measurement temperature in a pattern that was influenced by intercellular CO2. Stomatal conductance more than doubled at intercellular CO2 varying between 200 and 600 μmol mol-1 as leaf temperature increased from 25 to 35oC for plants grown at 23oC. In contrast, stomatal conductance was almost unaffected by measurement temperature in plants grown at 34oC. Elevated growth CO2 attenuated the response of stomatal conductance to CO2, but growth temperature did not. Stomatal sensitivity to Ci was extended to higher Ci in plants grown in elevated CO2. As a result, plants grown at 750 μmol mol-1 CO2 had higher Ci/Ca at ambient CO2 values between 300 and 1200 ¼mol mol-1 than plants grown at 350 ¼mol mol-1 CO2. The gain of the stomatal loop was reduced in plants grown at elevated CO2 or at lower temperature when compared to plants grown at 350 μmol mol-1 and 34°C. Both photosynthetic and stomatal loop gains acclimated to elevated CO2 in proportion so that their ratio, integrated over the range of Ci in which the plant operates, remained constant. Water use efficiency (WUE) more than doubled after a short-term doubling of ambient CO2. However, the WUE of plant grown and measured at elevated CO2 was only about 1.5 times that of plant transiently exposed to elevated CO2, due to stomatal acclimation. An optimal strategy of water use was maintained for all growth treatments.

Journal ArticleDOI
TL;DR: Results indicate that salt specifically induces an increase of protein levels involving cyclic electron flow around photosystem I that may entail an important role for adaptation of Aphanothece halophytica cells to high salinities.
Abstract: To uncover the adaptation mechanisms of photosystems for halotolerance, changes in stoichiometry and activity of photosystems in response to changes of salinities were examined in a halotolerant cyanobacterium, Aphanothece halophytica. Photosynthetic O2 evolution was high even at high salinities. O2 evolution activity increased with increasing external concentration of NaCl, reached a maximum at 1.5 M NaCl, and then decreased. Similar salt dependence was observed for photosystem II activity. On the other hand, photosystem I activity increased concomitantly with increase in salinity. Photoacoustic measurements indicated that appreciable energy storage by photosystem I mediated cyclic electron flow at high salinities. Significant electron donation to photosystem I reaction centres through NAD(P)H-dehydrogenase complexes was observed in high salt media. The contents of cytochrome b6/f and photosystem II were almost constant under various salinity conditions, whereas the levels of chlorophyll α, photosystem I, soluble cytochrome c-553, and NAD(P)H-dehydrogenase increased in the cells grown with high salinities. These results indicate that salt specifically induces an increase of protein levels involving cyclic electron flow around photosystem I that may entail an important role for adaptation of Aphanothece halophytica cells to high salinities.

Journal ArticleDOI
TL;DR: The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D, and performed best for both the C3 and C4 species.
Abstract: The leaf transpiration efficiency (A/E, where A is the assimilation rate and E the transpiration rate) is widely used to evaluate plant responses to the environment, yet little attention has been paid to its relationship with vapour pressure deficit (D), the driving force for E. The proposed model is based on the increasingly recognised linear relationship between the ratio of intercellular to ambient CO2 partial pressures (cI/ca) and D. Unlike previous models for A/E, the proposed model does not assume that the leaf and air temperatures are the same or that ci/ca is constant. A/E predicted by the model agreed with that measured for the C3 Encelia farinosa and the C4 Pleuraphis rigida, common species in the north-westem Sonoran Desert, based on gas exchange measured in the field and in environmental chambers. The dependency of cI/ca and A/E on D was additionally evaluated using published data for five other C3 species and two other C4 species. Generally, ci/ca was more sensitive to changes in D for the C4 species than the C3 species. The predictions for A/E by the model were also compared with predictions using a constant ci/ca, either a general cI/ca (0.7 for C3 and 0.3 for C4) or a species-dependent mean cI/ca. Overall, the proposed model performed best for both the C3 and C4 species; using the general cI/ca always resulted in an over-prediction of A/E.

Journal ArticleDOI
TL;DR: The positive correlation between Δ, gs and yield in the commercial Pima lines provides further evidence for selection pressures on higher gs ensuing from selection for higher yield and heat resistance, and could increase yield in crops grown in hot, high irradiance, and well-irrigated environments.
Abstract: Stable carbon isotope discrimination (Δ) was evaluated in primitive and cultivated Gossypium barbadense L. Significant differences among cultivated Pima lines were positively associated with the degree of selection for lint yield and heat resistance. A population mean study of a cross between B368, a primitive, uncultivated G. barbadense, and Pima S-6, an advanced line, showed that Δ is probably under genetic control, and could be a suitable selection trait in breeding programs. Eleven uncultivated accessions of primitive G. barbadense of varying origins grown in one environment showed a broad range of Δ values (18.8-20.50), pointing to substantial genetic variation of Δ in the G. barbadense germplasm. A was strongly correlated with stomatal conductance (gs) in the commercial lines, a segregating F2 population of the B368 × Pima S-6 cross, and the collection of uncultivated G. barbadense. This relationship indicates that variation in gs is the main source of variation for Δ in both uncultivated and commercial G. barbadense. The positive correlation between Δ, gs and yield in the commercial Pima lines provides further evidence for selection pressures on higher gs ensuing from selection for higher yield and heat resistance. Selection for higher Δ could increase yield in crops grown in hot, high irradiance, and well-irrigated environments.

Journal ArticleDOI
TL;DR: A mechanistically-based model of light-mediated activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is developed and it is suggested that the increasing CO2 sensitivity seen as the change in PPFD decreases reflects a transition to limitation by carbamylation.
Abstract: A mechanistically-based model of light-mediated activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is developed. The model describes the kinetics of Rubisco activation following a relatively rapid increase in photon flux density (PPFD) from an initially low level. Underlying the model is the assumption that there are two slow processes that could potentially limit the rate of light-mediated Rubisco activation. These processes are the addition of the activator CO2 to the large subunit of Rubisco, which is accompanied by a conformational change in the enzyme (carbamylation), and activase-mediated removal of ribulose 1,5-bisphosphate from the inactive form of the enzyme. The contribution of these slow processes to the overall activation kinetics of Rubisco was resolved by measuring Rubisco activation in whole spinach leaves using non-steady-state CO2 exchange. It was found that when the change in PPFD was relatively small and a correspondingly small proportion of the Rubisco pool was activated, the kinetics of activation were highly sensitive to the intercellular CO2 concentration (ci). The apparent rate constant for activation under these conditions was found to be similar to that for the carbamylation of purified spinach Rubisco. When the change in PPFD and the proportion of Rubisco activated was relatively large, however, the kinetics of Rubisco activation were almost completely CO2 insensitive and were consistent with those of an enzyme-catalysed reaction. It is suggested that (1) CO2-insensitive activation reflects the operation of Rubisco activase and (2) the increasing CO2 sensitivity seen as the change in PPFD decreases reflects a transition to limitation by carbamylation.

Journal ArticleDOI
TL;DR: The effects of organic osmolytes synthesised and accumulated by red algae from mangrove habitats were investigated on the in vitro activities of two major enzymes, one of the citric acid cycle (malate dehydrogenase, MDH) andOne of the oxidative pentose phosphate pathway (glucose-6- phosphate dehydrogenases, G6PDH).
Abstract: The effects of organic osmolytes synthesised and accumulated by red algae from mangrove habitats were investigated on the in vitro activities of two major enzymes, one of the citric acid cycle (malate dehydrogenase, MDH) and one of the oxidative pentose phosphate pathway (glucose-6- phosphate dehydrogenase, G6PDH). These enzymes were extracted from the mangrove algae Bostrychia tenella, Caloglossa leprieurii, Catenella nipae and Stictosiphonia hookeri. In each case, activity of the enzymes was inhibited with increasing NaCl concentrations up to 600 mM . In contrast, equimolar concentrations of mannitol (the major osmolyte in C. leprieurii), sorbitol (the major osmolyte in B. Tenella and S. hookeri) and a heteroside mixture (of which floridoside is the major osmolyte in C. nipae) did not inhibit enzyme function. Dulcitol, the second most important organic osmolyte in B. tenella, exerted no negative effect at its maximum solubility of 180 rnM on the salt-sensitive MDH. These data are all consistent with the proposed function of these organic compounds as compatible solutes.

Journal ArticleDOI
TL;DR: An ability to produce and maintain transpiration surface appears the most valuable physiological attribute of plants selected to dewater damaged agricultural catchments currently being subjected to increasing periods of waterlogging due to excessive clearing of native woodlands.
Abstract: Morphological and physiological responses to drought and waterlogging of six clonal lines of Eucalyptus camaldulensis Dehnh., originally from five geographically separated locations, were compared under controlled glasshouse conditions. The clones differed significantly in their ability to produce leaf and root tissue during stress periods. Clones which produced the greatest numbers of leaves (Dongara, WA clone M76 and Silverton, NSW clone M79) had leaves of low specific weight, while clones which produced fewer leaves (Erudina, SA clone M66 and Murray Bridge, SA clone M86) had leaves of relatively high specific weight. Clonal lines that produced the greatest leaf area also produced the greatest root weight. Comparisons of water use produced fewer differences, although clone M76, which produced the greatest number of leaves and the greatest total leaf area, also used the most water in both the drought and waterlogging trials. Stomatal conductance, net gas exchange and leaf nutrient allocation did not differ greatly among the clonal lines. An ability to produce and maintain transpiration surface appears the most valuable physiological attribute of plants selected to dewater damaged agricultural catchments currently being subjected to increasing periods of waterlogging due to excessive clearing of native woodlands.

Journal ArticleDOI
TL;DR: Wheat plants were stably transformed with the bar gene and the gene encoding the barley yellow mosaic virus coat protein and transmission of the two genes to progeny of two independent plants was confirmed.
Abstract: Wheat plants (Triticum aestivum cv. Hartog) were stably transformed with the bar gene and the gene encoding the barley yellow mosaic virus coat protein. Cultured immature wheat embryos were bombarded with tungsten particles coated with the pEmuPAT-cp construct. Fifteen regenerating 'PPT- resistant' plants were selected on medium containing phosphinothricin. Of these, 11 plants had both the bar and cp genes integrated into the wheat genome and two plants had only the bar gene. Transmission of the two genes to progeny of two independent plants was confirmed. The barley yellow mosaic virus coat protein was detected in both the parent and progeny plants; however, bar gene expression occurred only in the parent plants.

Journal ArticleDOI
TL;DR: An ability to control uptake by roots or limit ion transport to leaf tissues were hypothesised as controlling physiological functions resulting in tolerance to severe soil ion imbalances in this species.
Abstract: Eucalyptus camaldulensis Dehnh. has previously been shown to survive and grow in waterlogged, highly saline and highly alkaline soils. The ability of six clones from five provenances of E. camaldulensis to produce biomass and utilise water, and the processes of stomatal conductance and gas exchange under stress conditions was examined under controlled conditions in a glasshouse. A clone originally from Wooramel, Western Australia (M80) produced the largest total plant biomass, the greatest total leaf area and greatest total root dry weight under conditions of waterlogging and gradually increasing salinity. A second clone from Wooramel (M16), however, tended to be among the least productive of the clones under this stress, indicating the wide potential variation in stress tolerance of trees from a single provenance. The response of clones to alkalinity stress was comparable to that measured under waterlogging/salinity stress. Water use was closely related to biomass production. Leaves produced while under salinity and alkalinity stress were comparable in ion content to those produced prior to the test conditions. An ability to control uptake by roots or limit ion transport to leaf tissues were hypothesised as controlling physiological functions resulting in tolerance to severe soil ion imbalances in this species. The impact of solution conductivity on stomatal conductance and water use, secondarily affected photosynthetic rates in these clones of E. camaldulensis. Tolerance of extreme conditions provides the opportunity to use these genotypes to reclaim damaged agricultural landscapes and mine spoils of high soil solution ion concentrations.

Journal ArticleDOI
TL;DR: In this paper, Vibrio harveyi (luxAB) and firefly (luc) were introduced into E. coli, Agrobacteriurn, Arabidopsis and tobacco and quantitatively assayed for luciferase activity using a range of in vitro and in vivo assay conditions.
Abstract: Luciferase genes from Vibrio harveyi (luxAB) and firefly (luc) were introduced into E. coli, Agrobacteriurn, Arabidopsis and tobacco. Transformed bacteria and plants were quantitatively assayed for luciferase activity using a range of in vitro and in vivo assay conditions. Both lux and luc proved efficient reporter genes in bacteria, although it is important to be aware that the sensitive assays may detect expression due to readthrough from distant promoters. LUX activity was undetectable by liquid nitrogen-cooled CCD camera assays on intact tissues of plants which showed strong luxAB expression by in vitro assays. The decanal substrate for the lux assay was toxic to many plant tissues, and caused chemiluminescence in untransformed Arabidopsis leaves. These are serious limitations to application of the lux system for sensitive, non-toxic assays of reporter gene expression in plants. In contrast, LUC activity was readily detectable in intact tissues of all plants with luc expression detectable by luminometer assays on cell extracts. Image intensities of luc-expressing leaves were commonly two to four orders of magnitude above controls under the CCD camera. Provided adequate penetration of the substrate luciferin is obtained, luc is suitable for applications requiring sensitive, non-toxic assays of reporter gene expression in plants.

Journal ArticleDOI
TL;DR: It is proposed that both these factors act synergistically to modulate PEPC during photosynthesis in maize and synergistically increased the Ki 50-fold, thus providing maximal protection against malate inhibition.
Abstract: The effects of metabolites, protein phosphorylation and malate inhibition on phosphoenolpyruvate carboxylase (PEPC) activity were investigated at pH 7.0 in partially purified enzyme from maize leaves. Glycine, glucose 6-phosphate or alanine stimulated the activity two- to three-fold. Glycine and glucose 6-phosphate increased the affinity for PEP by factors of eight and four respectively. These metabolites changed the response of the enzyme activity to pH. Activity increased between pH 6.8 and 8.0 by 10-fold in the absence and 26% in the presence of these metabolites. In vitro phosphorylation of PEPC increased the activity two-fold in the absence but not in the presence of these metabolites. Malate was a strong inhibitor of PEPC, the KI value being 0.25-0.5 mM. Protein phosphorylation and the above metabolites increased the Ki value by factors of three and 12 respectively, but they synergistically increased the Ki 50-fold, thus providing maximal protection against malate inhibition. In the crude extracts from light- and dark-adapted leaves in the presence of a physiological concentration of malate (20 mM), PEPC activity comparable to the photosynthetic rate was obtained only from the light-adapted leaves in the presence of metabolites indicating that both light-induced protein phosphorylation and metabolic activators were essential for PEPC activation during photosynthesis. We propose that both these factors act synergistically to modulate PEPC during photosynthesis in maize.

Journal ArticleDOI
TL;DR: Beneficial effects of low panicle height on canopy photosynthesis occurred even though the maximum single leaf photosynthesis and respiration rates were similar in both isogenic lines during grain filling.
Abstract: Reduced panicle height in a rice crop canopy may have beneficial effects of increasing yield potential through reduced shading of leaves leading to greater canopy photosynthesis. Effects of different panicle height in the canopy were evaluated in glasshouse and field experiments using isogenic lines with elongated upper internodes (EUI lines) from two cultivars. Isogenic lines of IR36 and IR50 with elongated upper internodes (IR36EUI and IR50EUI) had panicle heights at the top of the canopy of 96-100% of canopy height, while lines with low panicle heights had panicles which were 74 and 82% of canopy height respectively. Lines with low panicle height had about 10% more of the total leaf area index (LAI) above panicles and this resulted in up to 35% greater light interception by leaves above panicles relative to high panicle height plants. At 5 days before flowering IR36 and IR36EUI had equal canopy photosynthesis, while at flowering, lines had equal shoot nitrogen percentage and LAI. At maturity spikelets per mainstem were not significantly different. At 0, 7, 14 and 21 days after flowering (DAF), IR36, with low panicle height, had 10-30% greater canopy photosynthesis than IR36EUI; greater canopy photosynthesis was observed for IR50 relative to IR50EUI. These beneficial effects of low panicle height on canopy photosynthesis occurred even though the maximum single leaf photosynthesis and respiration rates were similar in both isogenic lines during grain filling. In the field and in a glasshouse experiment where plants were arranged into canopies, IR36, with low panicle heights had 15-40% greater yields than the isogenic line IR36EUI with high panicle heights; greater yields also occurred for IR50 than IR50EUI.

Journal ArticleDOI
TL;DR: Differences between N. solandri and N. menziesii in light response of photosynthesis are discussed in terms of ecosystem dynamics of Nothofagus forests in New Zealand.
Abstract: Responses of photosynthesis to light and temperature were studied in two Nothofagus species native to New Zealand: N. solandri var. cliffortioides (Hook. f.) Poole and N. menziesii (Hook. f.) Oerst.. Measurements of leaf photosynthesis were made in a controlled environment growth chamber at photosynthetic photon flux density between 0 and 700 μmol m-2 s-1 with temperatures set for 10, 20 and 25oC, on seedlings previously grown in a glasshouse from seed of three different origins. In both species, pronounced intraspecific variation was shown in dark respiration, light compensation point and light-saturated net photosynthesis (Amax). Seedlings of N. solandri showed higher dark respiration and light compensation levels than N. menziesii seedlings, but the two species did not differ in Amax. Change in temperature resulted in significant change in the response of photosynthesis to light in both N. solandri and N. menziesii. The differences between N. solandri and N. menziesii in light response of photosynthesis are discussed in terms of ecosystem dynamics of Nothofagus forests in New Zealand.

Journal ArticleDOI
TL;DR: Labelling patterns were consistent with the action of the glutamate synthase cycle in ammonium assimilation and glutamine synthesis was almost totally blocked by MSX and there was no continued incorporation of 15N into glutamate.
Abstract: Combined gas chromatography-mass spectrometry were used to evaluate the contributions of glutamate dehydrogenase (GDH) and the glutamate synthase cycle in 15N-labelled ammonium assimilation by four ectomycorrhizal fungal isolates. In all four species (Elaphomyces, Amanita, Pisolithus and Gautieria), glutamine was the major product accumulated following transfer of 14-day-old nitrogen-limited cultures to fresh medium. Label was rapidly assimilated into fungal tissue, with rates of 733 nmol g-1 FW h-1 in Pisolithus, 972 nmol g-1 FW h-1 in Amanita, 2760 nmol g-1 FW h-1 in Gautieria and 6756 nmol g-1 FW h-1 in Elaphomyces sp in the first 4 h of incubation. Incorporation of [15N]ammonium was sensitive to the inhibitory effects of both methionine sulfoximine (MSX, an inhibitor of glutamine synthetase (GS)) and albizziin (an inhibitor of glutamate synthase (GOGAT)) in three species (Amanita, Gautieria and Pisolithus) and labelling patterns were consistent with the action of the glutamate synthase cycle in ammonium assimilation. In all three species glutamine synthesis was almost totally blocked by MSX and there was no continued incorporation of 15N into glutamate. Elaphomyces displayed high levels of total incorporation of labelled ammonium in mycelium even in the presence of MSX, although incorporation into glutamine was reduced by 88%. This inhibition of GS by MSX, in addition to its partial inhibition by albizziin suggests strongly the action of glutamate synthase cycle in ammonium assimilation. The reduction in label entering glutamate under the influence of albizziin is direct evidence for the inhibition of GOGAT activity. However, MSX treatment had the effect of increasing significantly the quantity of label recovered in both glutamate and alanine. In the absence of GS inhibition there is clearly competition for ammonium which under normal physiological conditions results in assimilation through the glutamate synthase cycle. However, when GS is blocked by MSX label is able to cycle through the GDH pathway. Extra keywords: ectomycorrhiza, ammonium assimilation, glutamate synthase cycle, glutamate dehydrogenase, amino acid metabolism.

Journal ArticleDOI
TL;DR: The measurement of leaf temperature kinetics is a very convenient procedure for estimating plant adaptive ability to high temperatures and shows a high correlation with plant heat tolerance both in genotypic and species aspects.
Abstract: Leaf temperature kinetics were studied as a function of the rate of change of ambient temperature (Vt), light conditions, plant age, and genotypic and species diversity for Zea mays, Cucumis sativus, Lycopersicon esculentum, Phaseolus vulgaris, Beta vulgaris, Cucurbita pepo and Raphanus sativus. Ambient temperature was varied from 26 to 60oC at rates from 0.5 to 8oC/min. Leaf-air temperature differences (LATD) were registered with differential copper-constantan thermocouples. As the ambient temperature rose LATD increased because stomata had been closed in darkness. Still in the darkness, at some critical ambient temperature stomata opened and the leaf temperature reduced dramatically as result of stomatal transpiration. The critical temperature is strongly dependent upon Vt. Simple equations for the calculation of a threshold of plant temperature sensitivity and of a time constant for stomatal signal transduction have been obtained. These parameters show a high correlation with plant heat tolerance both in genotypic and species aspects. This is consistent with the idea that temporal organisation of plant regulatory systems plays a leading role in evolution and in adaptation to extreme environmental conditions. Both characteristics measured tend to change with plant age. It is concluded that the measurement of leaf temperature kinetics is a very convenient procedure for estimating plant adaptive ability to high temperatures.

Journal ArticleDOI
TL;DR: The enhancement of the mannitol-induced priming effect by nitrogenous reagents in cocklebur seeds could be implicated in the accumulation of cyanogenic compounds.
Abstract: Efficiency of organic or inorganic osmotica for seed priming of cocklebur (Xanthium pennsylvanicum Wallr.) revealed that KNO3 was the most promising, and was more effective than mannitol or other salts at the same concentration (200 mM) and was independent of the C2H4 action. However, KNO3 applied as a priming reagent enhanced the effect of C2H4 or that of the water stress imposed with mannitol. Unlike the action of mannitol, both KNO3M and C2H4 augmented the pool size of amino acids in seed cells. However, below 50 mM KNO3 imposing no stress only slightly, though insignificantly, affected the germinability as well as the levels of total cyanogen. On the other hand, at a high concentration which imposed water stress on the seeds, 200 mM KNO3 remarkably elevated the contents of both cyanogenic glycosides and lipids in the excised cotyledons. When C2H4 was added with KNO3, the level of cyanogenic compounds significantly increased but when added without KNO3, the contrary effect was shown. Hence the enhancement of the mannitol-induced priming effect by nitrogenous reagents in cocklebur seeds could be implicated in the accumulation of cyanogenic compounds. Unlike cocklebur, both common chickweed and barnyard grass seeds are very responsive to 30 mM KNO3 on germination, and such species abundantly contain cyanogen. The amount of cyanogen was further augmented by contact with KNO3 at only 30 mM. The role of NO-3 -dependent cyanogenesis is highlighted in relation to germination response of seeds.

Journal ArticleDOI
TL;DR: Although the acceleration of primordium initiation by LD or by GA application is the first external sign of floral evocation in L. temulentum, it is neither a sufficient nor an essential component of it.
Abstract: An acceleration of leaf primordium initiation by the shoot apex frequently follows floral evocation, but after varying intervals. The purpose of the experiments reported here was to define more closely the relation between this reduction of the plastochron and floral evocation, using the long day (LD) plant Lolium temulentum grown under closely controlled conditions.The acceleration begins at floral evocation, on the day after the first LD exposure, and increases after exposure to additional LDs. However, plants too young to be florally evoked by one LD nevertheless manifested an acceleration of primordium initiation, so the acceleration alone is not sufficient for evocation. Single applications of highly florigenic gibberellins (GAs), such as GA5, also accelerate the initiation of primordia and floral development, more so than does the weakly florigenic GA1. By contrast, single applications of the growth retardant Trinexapac-ethyl (CGA 163'935) to plants given one LD largely prevented the acceleration of primordium initiation but without inhibiting floral development. Thus, although the acceleration of primordium initiation by LD or by GA application is the first external sign of floral evocation in L. temulentum, it is neither a sufficient nor an essential component of it.

Journal ArticleDOI
TL;DR: Results indicate that differences in activity levels, thermal properties and in the kinetics of light activation and dark inactivation of PPDK extracted from cold-acclimated MISS and QUE plants, as reported in earlier studies, are due to causes other than kinetic properties or electrophoretic characteristics of P PDK.
Abstract: Plants from two populations of the C4 barnyard grass (Echinochloa crus-galli (L.) Beauv.) from Quebec (QUE) and Mississippi (MISS) were acclimated under controlled conditions to 26/20 and 14/8oC daylnight. The apparent energy of activation (Ea, Km for pyruvate, Vmax/Km ratios, Kcat (substrate turnover number) and specific activity of pyruvate, PI dikinase (PPDK, EC 2.7.9.1) were analysed from partially purified Sephadex G-25 extracts of PPDK from leaves and from highly purified PPDK. PPDK from both populations consisted of one isomorph with the same electrophoretic mobility in polyacrylamide gels and similar molecular weights for the native enzyme (385 kDa) and for the subunit of the tetramer (94.8 kDa). No significant differences were observed for any of the kinetic properties of partially purified or purified PPDK or for the specific activity per mg protein of purified PPDK extracted from plants of the two populations and acclimated to the two thermoperiods. Net photosynthetic rates (Ps) were positively correlated with PPDK activity levels (E) but ElPs ratios were lower than 1.0, ranging from 0.43 to 0.67. Results indicate that differences in activity levels, thermal properties and in the kinetics of light activation and dark inactivation of PPDK extracted from cold-acclimated MISS and QUE plants, as reported in earlier studies, are due to causes other than kinetic properties or electrophoretic characteristics of PPDK.

Journal ArticleDOI
TL;DR: It is proposed that glc 6-P (fru6-P) activates PEPC in a feedforward regulation and protects it against feedback inhibition by malate and thus coordinates the supply of photosynthate availability with malate synthesis required by the bacteroids to support symbiotic nitrogen fixation in nodules.
Abstract: The effects of metabolic activators and inhibitors on phosphoenolpyruvate carboxylase (PEPC) activity were examined at pH 7 in partially purified enzyme from nodules of soybean (Glycine max (L.) Merr.), Psophocarpus tetragonolobus DC. and Vigna unguiculata ssp. sesquipedalis (L.) Verdc. Glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, fructose 1-phosphate, fructose 1,6- bisphosphate and phosphoglycerate stimulated the activity about 2-fold at low (0.5 mM) but not saturating (2.5 mM) PEP concentration. Glc 6-P and fru 6-P were the most effective activators and they increased the affinity of the enzyme for PEP by 2-4-fold. The dicarboxylates, malate, succinate, malonate, 2-oxoglutarate and aspartate inhibited PEPC activity. Malate was the most inhibitory, and strongly inhibited PEPC activity even at saturating PEP concentration. The Ki values for malate were 0.3-0.4 mM for soybean and P. tetragonolobus. However, glc 6-P and fru 6-P alleviated maiate inhibition and increased the Ki values by 11- to 28-fold in these two species. We propose that glc 6-P (fru 6-P) activates PEPC in a feedforward regulation and protects it against feedback inhibition by malate and thus coordinates the supply of photosynthate availability with malate synthesis required by the bacteroids to support symbiotic nitrogen fixation in nodules.