scispace - formally typeset
Search or ask a question
JournalISSN: 0961-9534

Biomass & Bioenergy 

Elsevier BV
About: Biomass & Bioenergy is an academic journal published by Elsevier BV. The journal publishes majorly in the area(s): Biomass & Biofuel. It has an ISSN identifier of 0961-9534. Over the lifetime, 6478 publications have been published receiving 363426 citations. The journal is also known as: Biomass and bioenergy.
Topics: Biomass, Biofuel, Bioenergy, Energy source, Biogas


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: In this article, the global annual potential bioethanol production from the major crops, corn, barley, oat, rice, wheat, sorghum, and sugar cane, is estimated.
Abstract: The global annual potential bioethanol production from the major crops, corn, barley, oat, rice, wheat, sorghum, and sugar cane, is estimated. To avoid conflicts between human food use and industrial use of crops, only the wasted crop, which is defined as crop lost in distribution, is considered as feedstock. Lignocellulosic biomass such as crop residues and sugar cane bagasse are included in feedstock for producing bioethanol as well. There are about 73.9 Tg of dry wasted crops in the world that could potentially produce 49.1 GL year −1 of bioethanol. About 1.5 Pg year −1 of dry lignocellulosic biomass from these seven crops is also available for conversion to bioethanol. Lignocellulosic biomass could produce up to 442 GL year −1 of bioethanol. Thus, the total potential bioethanol production from crop residues and wasted crops is 491 GL year −1 , about 16 times higher than the current world ethanol production. The potential bioethanol production could replace 353 GL of gasoline (32% of the global gasoline consumption) when bioethanol is used in E85 fuel for a midsize passenger vehicle. Furthermore, lignin-rich fermentation residue, which is the coproduct of bioethanol made from crop residues and sugar cane bagasse, can potentially generate both 458 TWh of electricity (about 3.6% of world electricity production) and 2.6 EJ of steam. Asia is the largest potential producer of bioethanol from crop residues and wasted crops, and could produce up to 291 GL year −1 of bioethanol. Rice straw, wheat straw, and corn stover are the most favorable bioethanol feedstocks in Asia. The next highest potential region is Europe ( 69.2 GL of bioethanol), in which most bioethanol comes from wheat straw. Corn stover is the main feedstock in North America, from which about 38.4 GL year −1 of bioethanol can potentially be produced. Globally rice straw can produce 205 GL of bioethanol, which is the largest amount from single biomass feedstock. The next highest potential feedstock is wheat straw, which can produce 104 GL of bioethanol. This paper is intended to give some perspective on the size of the bioethanol feedstock resource, globally and by region, and to summarize relevant data that we believe others will find useful, for example, those who are interested in producing biobased products such as lactic acid, rather than ethanol, from crops and wastes. The paper does not attempt to indicate how much, if any, of this waste material could actually be converted to bioethanol.

1,811 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art of hydrolysis-fermentation technologies to produce ethanol from lignocellulosic biomass, as well as developing technologies, are evaluated.
Abstract: The state of the art of hydrolysis-fermentation technologies to produce ethanol from lignocellulosic biomass, as well as developing technologies, is evaluated. Promising conversion concepts for the short-, middle- and long-term are defined. Their technical performance was analysed, and results were used for economic evaluations. The current available technology, which is based on dilute acid hydrolysis, has about 35% efficiency (HHV) from biomass to ethanol. The overall efficiency, with electricity co-produced from the not fermentable lignin, is about 60%. Improvements in pre-treatment and advances in biotechnology, especially through process combinations can bring the ethanol efficiency to 48% and the overall process efficiency to 68%. We estimate current investment costs at 2.1 k€/kW HHV (at 400 MW HHV input, i.e. a nominal 2000 tonne dry/day input). A future technology in a 5 times larger plant (2 GW HHV ) could have investments of 900 k€/kW HHV . A combined effect of higher hydrolysis-fermentation efficiency, lower specific capital investments, increase of scale and cheaper biomass feedstock costs (from 3 to 2 €/GJ HHV ), could bring the ethanol production costs from 22 €/GJ HHV in the next 5 years, to 13 €/GJ over the 10–15 year time scale, and down to 8.7 €/GJ in 20 or more years.

1,683 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the research and development in this area are reviewed and cited in the present paper, and the concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance.
Abstract: Tar formation is one of the major problems to deal with during biomass gasification. Tar condenses at reduced temperature, thus blocking and fouling process equipments such as engines and turbines. Considerable efforts have been directed on tar removal from fuel gas. Tar removal technologies can broadly be divided into two approaches; hot gas cleaning after the gasifier (secondary methods), and treatments inside the gasifier (primary methods). Although secondary methods are proven to be effective, treatments inside the gasifier are gaining much attention as these may eliminate the need for downstream cleanup. In primary treatment, the gasifier is optimized to produce a fuel gas with minimum tar concentration. The different approaches of primary treatment are (a) proper selection of operating parameters, (b) use of bed additive/catalyst, and (c) gasifier modifications. The operating parameters such as temperature, gasifying agent, equivalence ratio, residence time, etc. play an important role in formation and decomposition of tar. There is a potential of using some active bed additives such as dolomite, olivine, char, etc. inside the gasifier. Ni-based catalyst are reported to be very effective not only for tar reduction, but also for decreasing the amount of nitrogenous compounds such as ammonia. Also, reactor modification can improve the quality of the product gas. The concepts of two-stage gasification and secondary air injection in the gasifier are of prime importance. Some aspects of primary methods and the research and development in this area are reviewed and cited in the present paper.

1,352 citations

Journal ArticleDOI
TL;DR: The experience with selecting perennial grasses for bioenergy production in both the US and Europe is summarized, and an overview of the characteristics and requirements of the four most investigated perennial rhizomatous grasses; switchgrass, miscanthus, reed canarygrass and giant reed are given.
Abstract: Perennial grasses display many beneficial attributes as energy crops, and there has been increasing interest in their use in the US and Europe since the mid-1980s. In the US, the Herbaceous Energy Crops Research Program (HECP), funded by the US Department of Energy (DOE), was established in 1984. After evaluating 35 potential herbaceous crops of which 18 were perennial grasses it was concluded that switchgrass (Panicum virgatum) was the native perennial grass which showed the greatest potential. In 1991, the DOE's Bioenergy Feedstock Development Program (BFDP), which evolved from the HECP, decided to focus research on a “model” crop system and to concentrate research resources on switchgrass, in order to rapidly attain its maximal output as a biomass crop. In Europe, about 20 perennial grasses have been tested and four perennial rhizomatous grasses (PRG), namely miscanthus (Miscanthus spp.), reed canarygrass (Phalaris arundinacea), giant reed (Arundo donax) and switchgrass (Panicum virgatum) were chosen for more extensive research programs. Reed canarygrass and giant reed are grasses with the C3 photosynthetic pathway, and are native to Europe. Miscanthus, which originated in Southeast Asia, and switchgrass, native to North America, are both C4 grasses. These four grasses differ in their ecological/climatic demands, their yield potentials, biomass characteristics and crop management requirements. Efficient production of bioenergy from such perennial grasses requires the choice of the most appropriate grass species for the given ecological/climatic conditions. In temperate and warm regions, C4 grasses outyield C3 grasses due to their more efficient photosynthetic pathway. However, the further north perennial grasses are planted, the more likely cool season grasses are to yield more than warm season grasses. Low winter temperatures and short vegetation periods are major limits to the growth of C4 grasses in northern Europe. With increasing temperatures towards central and southern Europe, the productivity of C4 grasses and therefore their biomass yields and competitiveness increase. Since breeding of and research on perennial rhizomatous grasses (PRG) is comparatively recent, there is still a significant need for further development. Some of the given limitations, like insufficient biomass quality or the need for adaption to certain ecological/climatic zones, may be overcome by breeding varieties especially for biomass production. Furthermore, sure and cost-effective establishment methods for some of the grasses, and effective crop production and harvest methods, have yet to be developed. This review summarizes the experience with selecting perennial grasses for bioenergy production in both the US and Europe, and gives an overview of the characteristics and requirements of the four most investigated perennial rhizomatous grasses; switchgrass, miscanthus, reed canarygrass and giant reed.

1,318 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023184
2022259
2021307
2020342
2019317
2018298